Tải bản đầy đủ - 0 (trang)
V. Taxonomic Status of Bradyrhizobium japonicum

V. Taxonomic Status of Bradyrhizobium japonicum

Tải bản đầy đủ - 0trang

Table I

Summary of Relationships among Selected Phenotypes and DNA Homology Groupings of

Bdyrhizobium jujumicum

Phenotype(s) exhibited by DNA

homology grouping

Phenotype category


6 (including 24)

38- 1 I5











Intrinsic antibiotic



Colony morpholog4 large mucoid

Small dry








Hollis et a/. (198 I )

and Keyser and

Griffin (1987)



Fuhrmann (1990),

Minam isawa

( 1990). and van

Berkum and

Sloger ( I99 1)

Kuykendall et al.


Basit et a/. ( 199 I ),

Fuhrmann (1990),

and Minamisawa


Huber et a/. (1984)

and Minamisawa


Minamisawa and

Fukai (1991)

Fuhrmann (1990)

and Minamisawa


van Berkum and

Keyser ( 1985)



Large watery

IAA production



Rhizobitoxine productionb



Dissimilatory nitrate


Ex planta nitrogenase activity


DNR(Nitrate respiration)



Nitrate respiration,




Low aa3,P-422"-

High aa3,P-422-

Fatty acids

Low 19:O cyclopropane, high 18: I

High I9:O cyclopropane, low 18: I

Huber et al. (1984),

Kuykendall and

Elkan (1976), and

Upchurch and

Elkan (1977)

Keister and Marsh

( 1990)

Kuykendall et al.


" Relationshipsderived indirectly from other phenotype-genotype correlations.

RT production based on direct analysis for RT rather than on induction of host chlorosis.

'Phenotypes in parentheses occur at relatively low frequencies (see references).



al., 1985). This mounting evidence of divergence recently culminated in a

proposal to reclassify soybean bradyrhizobia in DNA homology group I1 as

a new species, Bradyrhizobium elkanii (Kuykendall et al., 1992).

It is interesting to note that numerous studies have provided evidence

that many B. japonicum, particularly those in DNA homology group 11, are

often similar to bradyrhizobia isolated from cowpea. Morphologically, the

“large watery” colony type of B. juponicum (Fuhrmann, 1990) resembles

the “wet” colony type described for cowpea bradyrhizobia (Sinclair and

Eaglesham, 1984). Pankhurst et al. (1982) found a similar correlation

between rifampicin resistance and ex pluntu nitrogenase activity for bradyrhizobia from both soybean and cowpea. Serological analyses have revealed strong cross-reactionsbetween antisera produced against group I1 B.

juponicum and antigens from cowpea bradyrhizobia (Koontz and Faber,

196 1). Ahmad et al. (198 1) reported that cowpea bradyrhizobia with “dry”

colony types strongly reacted with antisera to B. juponicum RCR 3407, a

strain that is probably in DNA homology group I/Ia based on its placement

in serogroup 122 (Keyser and Griffin, 1987). Many bradyrhizobia isolated

from either cowpea or soybean are able to nodulate both hosts (Keyser et

al., 1982). Yet, although bradyrhizobia isolated from both hosts can produce RT in culture and in symbiosis with soybean, none has been shown to

induce chlorosis in the cowpea host (Eaglesham and Hassouna, 1982;

Eaglesham et al., 1987; La Favre and Eaglesham, 1986). Similarly, strains

of B. juponicum exhibiting the Huphr phenotype commonly express hydrogenase activity in symbiosis with cowpea but only rarely with soybean

(Keyser et al., 1982; van Berkum, 1990; van Berkum and Sloger, 1991).


This review has described known and suspected relationships among

various diversity groupings of soybean bradyrhizobia. These relationships

clearly demonstrate that the species B. japonicum contains two fundamentally distinct subgroups that coincide with established DNA homology

groupings. It is also evident that these subgroups possess unique characteristics of potential importance to the soybean symbiosis, and that many of

these interrelated characteristics may have significance to the general ecology of B. japonicum. Based on these observations, it is suggested that

population diversity groupings based on DNA homology may represent a

valuable and unifying concept in research of soybean bradyrhizobia, particularly for those studies concerned with the characterization of indigenous populations.




Paper No. 145 I of the Delaware Agricultural Experiment Station.


Agarwal, A. K., and Keister, D. L. ( I 983). Physiology of ex planta nitrogenax activity in

Rhizobiurnjaponicurn. Appl. Environ. Microbiol. 45, 1592- 160 I .

Ahmad, M. H., Eaglesham, A. R. J., and Hassouna, S. (198 I). Examining serologicaldiversity

of “cowpea” rhizobia by the ELlSA technique. Arch. Microbiol. 130,281 -287.

Albrecht, S. L., Maier, R. J., Hanus, F. J., Russell, S. A., Emerich, D. W., and Evans, H. J.

(1979). Hydrogenase in Rhizobium japonicum increases nitrogen hation by nodulated

soybeans. Science (Washington. D.C.)203, 1255- 1257.

Appelbaum, E. ( 1990).The Rhizobiurn/Bradyrhizobium-legumesymbiosis. In “The Molecular Biology o f Symbiotic Nitrogen Fixation” (P. M. Gresshoff, ed.), pp. 13 I - 158. CRC

Press, Boca Raton, Florida.

Arp, D. J. (1992). Hydrogen cycling in symbiotic bacteria. In “Biological Nitrogen Fixation”

(G. Stacey, R. H. Bums, and H. J. Evans, eds.), pp. 432-460. Chapman & Hall, New


Asanuma, S., Thottappilly, G., Ayanaba, A., and Ranga Rao, V. (1985). Use of the enzymelinked immunosorbent assay (ELISA) in the detection of Rhizobiurn both in culture and

from root nodules of soybeans and cowpea. Can. J. Microbiol. 31,524-528.

Ayanaba, A., Weiland, K. D., and Zablotowin, R. M. (1986). Evaluation of diverse antisera,

conjugates, and support media for detecting Bradyrhizobiurn japonicum by indirect

enzyme-linked immunosorbent assay. Appl. Environ. Microbiol. 52, 1 132- 1 138.

Basit, H.A,, Angle, J. S., Salem, S., Gewaily, E. M., Kotob, S. I., and van Berkum, P. (1991).

Phenotypic diversity among strains o f Bradyrhizobiurn japonicurn belonging to s e r e

group 110. Appl. Environ. Microbiol. 51, 1570- 1572.

Bauer, W. D., Bhuvaneswari, T. V., Calvert, H. E., Law, 1. J., Malik, N. S . A., and Vesper,

S. J. (1985). Recognition and infection by slow-growing rhizobia. In “Nitrogen Fixafion

Res. Prog.” Proc. Int. Syrnp. 6th, 247-253.

Bezdicek, D. F. (1972). Effect of soil factors on the distribution of Rhizobium japonicum

serogroups. Soil Sci. Soc. Am. Proc. 36,305 - 307.

Bohlool, B. B. (1987). Fluorescence methods forstudy ofRhizobium in culture and in situ. In

“Symbiotic Nitrogen Fixation Technology” (G. H. Elkan, ed.), pp. 127- 147. Dekker,

New York.

Bottomley, P. J. (1992). Ecology of Bradyrhizobiurn and Rhizobium. In “Biological Nitrogen

Fixation” (G. Stacey, R. H. Bums, and H. J. Evans, eds.),pp. 293-348. Chapman &

Hall, New York.

Breitenbeck, G. A., and Bremner, J. M. (1989). Ability of free-living cells of Bradyrhizobiurn

japonicurn to denitrify in soils. Biol. Fertil. Soils 1 , 2 I9 - 224.

Caldwell, B. E. (1966). Inheritance of a strain-specific ineffective nodulation in soybeans.

Crop Sci. 6,427-428.

Caldwell, B. E., and Hartwig, E. E. (1970). Serological distribution of soybean root nodule

bacteria in soils of southeastern U.S.A. Agron. J. 62,621 -622.

Caldwell, B. E., and Vest, G. (1968). Nodulation interactions between soybean genotypes and

serogroups of Rhizobiurn japonicurn. Crop Sci. 8,680-682.



Caldwell, B. E., and Vest, G. (1970). Effects of Rhizobium japonicum strains on soybean

yields. Crop Sci. 10, I9 - 2 I .

Caldwell, B. E., Hinson, K., and Johnson, H. W. (1966). A strain-specificineffective nodulation reaction in the soybean Glycine max L. Merrill. Crop Sci. 6,495 -496.

Chadwick, A. V., and Burg, S. P. (1967). An explanation of the inhibition of root growth

caused by indole-3-acetic acid. Plant Physiol. 42,415-420.

Cole, M. A,, and Eklan, G. H. (1979). Multiple antibiotic resistance in Rhizobium japonicum.

Appl. Environ. Microbiol. 37, 867 - 870.

Cregan, P. B., and Keyser, H. H. (1986). Host restriction of nodulation by Bradyrhizobium

japonicum strain USDA 123 in soybean. Crop Sci. 26,9 I 1 -9 16.

Cregan, P. B., Keyser, H. H., and Sadowsky, M. J. ( 1989a). Soybean genotype restricting

nodulation of a previously unrestricted serocluster 123 bradyrhizobia. Crop Sci. 29,

307-3 12.

Cregan, P. B., Keyser, H. H., and Sadowsky, M. J. (1989b). Host plant effects on nodulation

and competitiveness of the Bradyrhizobium japonicum serotype strains constituting

serocluster 123. Appl. Environ. Microbiol. 55, 2532-2536.

Damirgi, S. M., Frederick, L. R., and Anderson, 1. C. (1967). Serogroups of Rhizobium

japonicum in soybean nodules as affected by soil types. Agron. J. 59, 10- 12.

Daniel, R. M., Smith, I. M., Phillip, J. A. D., Ratcliffe, H. D., Drozd, J. W.,and Bull, A. T.

( I 980). Anaerobic growth and denitrification by Rhizobium japonicum and other rhizobia. J. Gen. Microbiol. 120, 5 17 - 52 1.

Date, R. A., and Decker, A. M. (1965). Minimal antigenic constitution of 28 strains of

Rhizobium japonicum. Can. J. Microbiol. 11, 1-8.

Davies, P. J. (1987). The plant hormones: Their nature, occurrence, and functions. Plant

Horm. Their Role Plant Growth Dev., 1 - I I .

Devine, T. E., and Breithaupt, B. G. (1980a). Significance of incompatibility reactions of

Rhizobium japonicum strains with soybean genotypes. Crop Sci. 20,269-27 1.

Devine, T. E., and Breithaupt, B. H. (1980b). Effect of the ethoxy analog of rhizobitoxine on

nodulation of soybeans. Crop Sci. 20,s 19- 82 1.

Devine, T. E., and Weber, D. F. (1977). Genetic specificity of nodulation. Euphytica 26,


Devine, T. E., Kuykendall, L. D., and Breithaupt, B. H. (1983). Nodule-like structures

induced on peanut by chlorosis producing strains of Rhizobium classified as R. japonicum. Crop Sci. 23,394-397.

Devine, T. E., Kuykendall, L. D., and ONeill, J. J. (1988). DNA homology group and the

identity of bradyrhizobial strains producing rhizobitoxine-inducedchlorosis on soybean.

Crop Sci. 28,938 - 94 I .

Devine, T. E., Kuykendall, L. D., and ONeill, J. J. (1990). The Rj, allele in soybean represses

nodulation by chlorosis-inducing bradyrhizobia classified as DNA homology group I1 by

antibiotic resistance profiles. Theor. Appl. Genet. 80,33-37.

Devine, T. E., Kuykendall, L. D., and ONeill, J. J. (1991). Nodulation interaction of the

soybean allele Rj, with Asiatic isolates of Bradyrhizobium japonicum. Crop Sci. 31,

1129- 1131.

Drevon, J. J., M i a , V. C., Heckmann, M. O., and Salsac, L. (1987). Influence of the

Bradyrhizobium japonicum hydrogenase on the growth of Glycine and Vigna species.

Appl. Environ. Microbiol. 53,6 10- 6 12.

Drennan, D. S. H., and Norton, C. (1972). The effect of ethrel on nodulation in Pisum

sativum L.Plant Soil36,53-57.

Dunn, M. F., and Karr, A. L. (1990). Isolation of an extracellular polysaccharide (EPS)

depolymerase produced by Bradyrhizobiumjaponicum. Cum.Microbiol. u),359- 363.



Eaglesham, A. R. J. (1987).The use of intrinsic antibiotic resistance for Rhizobium study. In

“Symbiotic Nitrogen Fixation Technology” (G. H. Elkan, ed.), pp. 185-204. Dekker,

New York.

Eaglesham, A. R. J., and Hassouna, S. (1982). Foliar chlorosis in legumes induced by cowpea

rhizobia. Plant Soil 65,425 -428.

Eaglesham, A. R. J., Stowers, M. D., Maina, M. L., Goldman, B. J., Sinclair, M. J., and

Ayanaba, A. (1987). Physiological and biochemical aspects of diversity of Bradyrhizobium sp. (Vigna) from three West African soils. Soil Biol. Biochem. 19,575 - 58 1 .

Egebo, L. A., Nielsen, S. V. S.,and Jochimsen, B. U. ( 199 I). Oxygendependent catabolism

of indole-3-acetic acid in Bradyrhizobiumjaponicum. J. Bacferiol. 173,4897 -490 1.

Emerich, D. W., Ruiz-Argueso, T., Chin& T. M., and Evans, H. J. ( 1979).Hydrogendependent nitrogenase activity and ATP formation in Rhizobium japonicum bacteroids. J.

Bacferiol. 137, I53 - 160.

Erdman, L. W., Johnson, H. W., and Clark, F. (1956). A bacterial-induced chlorosis in the

Lee soybean. Plant Dis. Rep. 40,646.

Erdman, L. W., Johnson, H. W., and Clark, F. (1957). Varietal responses of soybeans to a

bacterial-induced chlorosis. Agron. J. 49,267 -27 I .

Evans, H. J., Harker, A. R., Papen, H., Russell, S. A., Hanus, F. J., and Zuber, M. (1987).

Physiology, biochemistry, and genetics of the uptake hydrogenase in rhizobia. Annu.

Rev. Microbiol. 41, 335-361.

Fearn, J. C., and LaRue, T. A. (1991). Ethylene inhibitors restore nodulation to sym 5

mutants of Pisum sativum L.cv. Sparkle. Plant Physiol. 96,239-244.

Fuhrmann, J. (1989). Serologicaldistribution of Bradyrhizobium japonicum as influenced by

soybean cultivar and sampling location. Soil Biol. Biochem. 21, 1079- 1081.

Fuhrmann, J. (1990). Symbiotic effectivenessof indigenous soybean bradyrhizobia as related

to serological, morphological, rhizobitoxine, and hydrogenase phenotypes. Appl. Environ. Microbiol. 56,224- 229.

Fuhrmann, J., and Wollum II., A. G . (1985). Simplified enzyme-linked irnmunosorbent

assay for routine identitication of Rhizobium japonicum antigens. Appl. Environ. Microbiol. 49, 1010-1013.

Giannakis, C., Nicholas, D. J. D., and Wallace, W. (1988). Utilization of nitrate by bacteroids

of Bradyrhizobiumjaponicum in the soybean nodule. Planta 174,5 1-58.

Gibson, A. H., Dudman, W. F., Weaver, R. W., Horton, J. C., and Anderson, 1. C. (1971).

Variation within serogroup 123 of Rhizobium japonicum. Plant Soil Spec. Vol., 33-37.

Giovanelli, J., Owens, L. D.. and Mudd, S. H. (197 I). Mechanism of inhibition of spinach

Bcystathionase by rhizobitoxine. Biochim. Biophys. Acta 221,67 1-684.

Giovanelli, J., Owens, L. D., and Mudd, S. H. (1972).BCystathionase-In vivo inactivation

by rhizobitoxine and role of the enzyme in methionine biosynthesis in corn seedlings.

Plant Physiol. 51,492-503.

Giovanelli, J., Mudd, S. H., and Datko, A. H. ( I 980). Sulfur amino acids in plants. In “The

Biochemistry of Plants: Amino Acids and Derivatives” (B.J. Mitlin, ed.), Vol. 5, pp.

453-505. Academic Press, New York.

Goodlass, G.,and Smith, K. A. (1979). Effects of ethylene on root extension and nodulation

of pea (Pisum sativum L.) and white clover (Trifolium repens L.). Plant Soil 51, 387395.

Gresshoff, P. M., Roth, L. E., Stacey, G., and Newton, W. E., eds. (1990). Nitrogen Fixation:

Achiev. Objectives Proc. Int. Congr., 8th.

Grobbelaar, N., Clarke, B., and Hough, M. C. (1971). The nodulation and nitrogen fixation

of isolated roots of Phaseolus Vulgaris L. 111. The effect of carbon dioxide and ethylene.

Plant Soil Spec. Vol., 215-223.



Hadad, M. A., and Loynachan, T. E. (1986). Groundnut nitrogen fixation by three serologically and morphologically distinct rhizobia. Soil Biol. Biochem. 18, 161- 166.

Ham, G. E., Frederick, L. R., and Anderson, 1. C. (1971). Serogroups of Rhizobiurnjaponicum in soybean nodules sampled in Iowa. Agron. J. 63,69-72.

Hanus, F. J., Albrecht, S. L., Zablotowicz, R. M., Emerich, D. W., Russell, S. A., and Evans,

H. J. (1981). Yield and N content of soybean seed as influenced by Rhizobium japonicum inoculants possessing the hydrogenase characteristic. Agron. J. 73, 368-372.

Hashem, F. M., and Angle, J. S. (1988). Rhizobiophage effects on Bradyrhizobium japonicum, nodulation and soybean growth. Soil Biol. Biochem. 20,69-73.

Hashem, F. M., and Angle, J. S. (1990). Rhizobiophage effects on nodulation, nitrogen

fixation, and yield of field-grown soybeans (Glycine m u L. Mem). Biol. Fertil. Soils 9,


Hashem. F. M., Angle, J. S., and Ristiano, P. A. (1986). Isolation and characterization of

rhizobiophages specific for Bradyrhizobium japonicum USDA 1 17. Can. J. Microbiol.


Hemdge, D. F., and Roughley, R. J. (1975). Variation in colony characteristicsand symbiotic

effectiveness of Rhizobium. J. Appl. Bacferiol. 38, 19-27.

Hickey, W. J., Loynachan, T. E., Ayanaba, A., and Zablotowicz, R. M. (1987). Diversity

within Iowa Bradyrhizobium japonicum serogroup 123. Soil Sci. Soc. Am. J. 51,941 946.

Hollis, A. B., Woos, W. E., and Elkan, G. H. (1981). DNA: DNA hybridization studies of

Rhizobium japonicurn and related Rhizobiaceae. J. Gen. Microbiol. 123, 2 I5 - 222.

Huber, T. A., Agarwal, A. K., and Keister, D. L. ( I 984). Extracellular polysaccharide composition, ex planta nitrogenase activity, and DNA homology in Rhizobiurn japonicum. J.

Bacteriol. 158, I I68 - I I7 I .

Hume, D. J., and Shelp, B. J. (1990). Superior performance of the Hup- Bradyrhizobiurn

japonicum strain 532C in Ontario soybean field trials. Can. J. Planf Sci. 70,661 -666.

Hungria, M., Neves, M. C. P., and Dobereiner, J. ( I 989). Relative efficiency, ureide transport

and harvest index in soybeans inoculated with isogenic HUP mutants of Bradyrhizobium japonicum. Biol. Fertil. Soils 7,325- 329.

Bradyrhizobium japonicum

Hunter, W. J. ( 1987). Influence of 5-methyltryptophan-resistant

on soybean root nodule indole-3-acetic acid content. Appl. Environ. Microbiol. 53,

1051- 1055.

Hunter, W. J. (1989). Indole-3-acetic acid production by bacteroids from soybean root

nodules. Physiol. Plant. 76, 31 -36.

Hunter, W. J., and Kuykendall, L. D. (1990). Enhanced nodulation and nitrogen fixation by

a revertant of a nodulationdefective Bradyrhizobiumjaponicum tryptophan auxotroph.

Appl. Environ. Microbiol. 56,2399 - 2403.

Ishizuka, J., Suemasu, Y. and Mizogami, K. (1991a). Preference of Rj-soybean cultivars for

Bradyrhizobiumjaponicum for nodulation. Soil Sci. Planf Nutr. (Tokyo)37, 15-2 I.

Ishizuka, J., Yokoyama, A,, and Suemasu, Y. (1991b). Relationship between serotypes of

Bradyrhizobiumjaponicum and their compatibility with Rj-cultivars for nodulation. Soil

Sci. Plan[ Nutr. (Tokyo)37, 23 - 30.

Johnson, H. W., and Clark, F. E. (1958). Role of the root nodule in bacterial-induced

chlorosis of soybeans. Soil Sci.Soc. Am. Proc. 22, 527 -528.

Johnson, H. W., and Means, U. M. (1960). Interactions between genotypes of soybeans and

genotypes of nodulating bacteria. Agron. J. 52,651 -654.

Johnson, H. W., and Means, U. M. (1963). Serological groups of Rhizobium japonicum

recovered from nodules of soybeans (Glycine mar) in field soils. Agron. J. 55,269 - 27 I .

Jordan, D. C. (1982). Transfer of Rhizobiurnjaponicurn Buchanan 1980 to Bradyrhizobium



gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J.

Syst. Bacteriol. 32, 1 36 - 139.

Kamicker, B. J., and Brill, W. J. (1986). Identification of Bradyrhizobium japonicum nodule

isolates from Wisconsin soybean farms. Appl. Environ. Microbiol. 51,487-492.

Kaneshiro, T., and Kwolek, W. F. (1985). Stimulated nodulation of soybeans by Rhizobium

japonicum mutant (B14075) that catabolizes the conversion of tryptophan to indol-3ylacetic acid. Plant Sci. (Limerick, Irel.) 42, 141 - 146.

Kaneshiro, T., and Nicholson, J. J. (1990). Bradyrhizobium japonicum subspecies (USDA

110 and 26) characterized by fixed-nitrogen uptake and symbiotic indoleacetic acid

production. Cum. Microbiol. 20, 38 I - 385.

Keister, D. L., and Marsh, S. S. (1990). Hemoproteins of Bradyrhizobium japonicum cultured cells and bacteroids. Appl. Environ. Microbiol. 56, 2736-2741.

Keith, D. D., de Bernardo, S., and Weigle, M. (1975). The absolute configuration of rhizobitoxine. Tetrahedron 31, 2629-2632.

Keyser, H. H., and Griffin, R. F. (1987). “Beltsville Rhizobium Culture Collection Catalog,”

ARS-60. U.S. Department of Agriculture, Agricultural Research Service, Beltsville,


Keyser, H. H., van Berkum, P., and Weber, D. F. (1982). A comparative study of the

physiology of symbioses formed by Rhizobium japonicum with Glycine mar, Vigna

unguiculata, and Macroplilium atropurpurem. Plant Physiol. 70, I626 - 1630.

Keyser, H. H., Weber, D. F., and Uratsu, S. L. (1984). Rhizobium juponicum serogroup and

hydrogenase phenotype distribution in 12 states. Appl. Environ. Microbiol. 47, 6 I3 615.

Kijne, J. W. (1992). The Rhizobium infection process. In “Biological Nitrogen Fixation” (G.

Stacey, H. J. Evans, and R. H. Bums eds.), pp. 349-398. Chapman & Hall, New York.

Kimou, A., and Drevon, J. J. (1989). Hydrogen metabolism and nitrogen fixation of soybean

(Glycine mar L.) inoculated with different strains of Rhizobium spp. Biol. Fertil. Soils 7,


Kishinevsky, B. D., and Jones, D. G. (1987). Enzyme-linked immunosorbent assay (ELISA)

for the detection and identification of Rhizobium strains. In “Symbiotic Nitrogen Fixation Technology” (G. H. Elkan, ed.), pp. 157- 184. Dekker, New York.

Kluson, R. A., Kenworthy, W. J., and Weber, D. F. ( I 986). Soil temperature effects on

competitiveness and growth of Rhizobium japonicum and on Rhizobium-induced chlorosis of soybeans. Plant Soil 95,20 1 - 207.

Koontz, F. P., and Faber, J. E. (1961). Somatic antigens of Rhizobium japonicum. Soil Sci.


Kowalski, M., Ham, G. E., Frederick, L. R., and Anderson, I. C. (1974). Relationship

between strains of Rhizobium japonicum and their bacteriophages from soil and nodules

of field-grown soybeans. Soil Sci. 118,22 1 -228.

Kuykendall, L. D., and Elkan, G. H. (1976). Rhizobium japonicum derivatives differing in

nitrogen-fixing efficiency and carbohydrate utilization. Appl. Environ. Microbiol. 32,

5 1 1-519.

Kuykendall, L. D., Roy, M. A., ONeill, J. J., and Devine, T. E. (1988). Fatty acids, antibiotic

resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicurn.

Int. J. Syst. Bacteriol. 38, 358 - 36 I .

Kuykendall, L. D., Saxena, B., Devine, T. E., and Udell, S. E. (1992). Genetic diversity in

Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobiurn elkanii sp.

nov. Can. J. Microbiol. 38, 501 -505.

Kvien, C. S., Ham, G. E., and Lambert, J. W. (1981). Recovery of introduced Rhizobium

japonicum strains by soybean genotypes. Agron. J. 73,900-905.



Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of

bacteriophage T4. Nature (London) 227,680-685.

La Favre, J. S., and Eaglesham, A. R. J. (1984). Increased nodulation of “non-nodulating”

( r j , r j , ) soybeans by high dose inoculation. Plant Soil80,297-300.

La Favre, J. S., and Eaglesham, A. R. J. (1986). Rhizobitoxine: A phytotoxin of unknown

function which is commonly produced by bradyrhizobia. Plant Soil 92,443-452,

La Favre, J. S., La Favre, A. K., and Eaglesham, A. R. J. ( I 988). Rhizobitoxine production by

and nodulation characteristics of colony-type derivatives of Brudyrhizobium juponicum

USDA 76. Can. J. Microbiol. 34, 1017-1022.

Law, I. J., Yamamoto, Y., Mort, A. J., and Bauer, W. D. (1982). Nodulation of soybean by

Rhizobium juponicum mutants with altered capsule synthesis. Plunta 154, 100- 109.

Ligero, F., Lluch, C., and Olivares, J. (1987). Evolution of ethylene from roots and nodulation rate of alfalfa (Medicugo sutivu L.) plants inoculated with Rhizobium meliloti as

affected by the presence of nitrate. J. Plunt Physiol. 129,46 1-467.

Ligero, F., Caba, J. M., Lluch, C., and Olivares, J. (1991). Nitrate inhibition of nodulation

can be overcome by the ethylene inhibitor aminoethoxyvinylglycine. Plunt Physiol. 97,

1221 - 1225.

Lim, S . T. (1978). Determination of hydrogenase in free-living cultures of Rhizobiumjuponicum and energy efficiency of soybean nodules. Plant Physiol. 62,609 -6 I I .

Lim, S. T., Uratsu, S. L., Weber, D. F., and Keyser, H. H. (1981). Hydrogen uptake

(hydrogenase) activity of Rhizobium juponicurn strains forming nodules in soybean

production areas of the U.S.A. Genet. Eng. Symbiotic Nitrogen Fixation Conserv. Fixed

Nitrogen. 159- 171. [See also Lim, S. T., Uratsu, S. L., Weber, D. F., and Keyser, H. H.

(198 I). Hydrogen uptake (hydrogenase) activity of Rhizobium juponicum strains forming nodules in soybean production areas of the U.S.A. Basic Life Sci. 17, 159- I7 I .]

MacKenzie, S. L., Lapp, M. S., and Child, J. J. (1979). Fatty acid composition of Rhizobium

spp. Cun. J. Microhiol. 25,68-14.

Mathis, J. N., Israel, D. W., Barbour, W. M., Jarvis, B. D. W., and Elkan, G. H. (1986).

Analysis of the symbiotic performance of Brudyrhizobiumjuponicum USDA I 10 and its

derivative 1-1 10 and discovery of a new mannitol-utilizing, nitrogen-fixing USDA 110

derivative. Appl. Environ. Microbiol. 52, 75 - 80.

Means, U. M., Johnson, H. W., and Date, R. A. (1964). Quick serological method of

classifying strains of Rhizobiumjuponicum in nodules. J. Bacteriol. 87, 547-553.

Minamisawa, K. ( 1 989). Comparison of extracellular polysaccharide composition, rhizobitoxine production, and hydrogenase phenotype among various strains of Erudyrhizobium juponicum. Plant Cell Physiol. 30,877 - 884.

Minamisawa, K. ( 1990). Division of rhizobitoxine-producing and hydrogenase-uptake positive strains of Bradyrhizobium juponicum by niJDKE sequence divergence. Plunt Cell

Physiol. 31,81-89.

Minamisawa, K., and Fukai, K. (1991). Production of indole-3-acetic acid by Brudyrhizobium juponicum: A correlation with genotype grouping and rhizobitoxine production.

Plant Cell Physiol. 32, 1-9.

Minamisawa, K., and Kume, N. (1987). Determination of rhizobitoxine and dihydrorhizobitoxine in soybean plants by amino acid analyzer. Soil Sci. Plant Nutr. (Tokyo) 33,


Minamisawa, K., Fukai, K., and Asami, T. (1990). Rhizobitoxine inhibition of hydrogenase

synthesis in free-living Bradyrhizobium juponicum. J. Bacteriol. 172,4505 -4509.

Mpepereki, S., and Wollum 11.. A. G. (1991). Diversity of indigenous Bradyrhizobium

juponicum in North Carolina soils. Biol. Fertil. Soils 11, 121 - 127.

Mueller, J. G., Skipper, H. D., Shipe, E. R., Grimes, L. W., and Wagner, S. C. (1988).



Intrinsic antibiotic resistance in Bradyrhizobium japonicum. Soil Boil. Biochem. 20,


Mullen, M. D., and Wollum II., A. G . (1989). Variation among different cultures of Bradyrhizobium japonicum strains USDA I10 and 122. Can. J. Microbiol. 35,583-588.

Neal, J. L., Allen, G. C., Mom, R. D., and Wolf, D. D. (1983). Anaerobic nitratedependent

chemolthtrophic growth by Rhizobium japonicum. Can. J. Microbiol. 29, 3 16-320.

Noel, K. D., and Brill, W. J. (1980). Diversity and dynamics of indigenous Rhizobiurn

juponicum populations. Appl. Environ. Microbiol. 40,93 1-938.

OBrian, M. R., and Maier, R. J. (1988). Hydrogen metabolism in Rhizobiurn-Energetics,

regulation, enzymology, and genetics. Adv. Microb. Physiol. 29, 1 - 52.

OHara, G . W., and Daniel, R. M. (1985). Rhizobial denitrification: A review. Soil Biol.

Biochem. 17, 1-9.

Owens, L. D., and Wright, D. A. (1965a). Rhizobial-inducedchlorosis in soybeans: Isolation,

production in nodules, and varietal specificity of the toxin. Plant Physiol. 40,927-930.

Owens, L. D., and Wright, D. A. (1965b). Production of the soybeanchlorosis toxin by

Rhizobiurn japonicum in pure culture. Plant Physiol. 40,931 -933.

Owens, L. D., Guggenheim, S., and Hilton, J. L. (1968). Rhizobium-synthesized phytotoxin:

An inhibitor of fiyctathionase in Salmonella typhimurium. Biochim. Biophys. Actu


Owens, L. D., Lieberman, M., and Kunishi, A. (197 I). Inhibition of ethylene production by

rhizobitoxine. Plant Physiol. 48, 1-4.

Owens, L. D., Thompson, J. F., Pitcher, R. G., and Williams, T. (1972). Structure of

rhizobitoxine, an antimetabolic enol-ether amino-acid from Rhizobium japonicum. J.

Chem. Soc. Chem. Commun..7 14.

Ozawa, T., Fukushima, K.,and Komai, Y. (1989). Beneficial effect of hydrogen uptake

ability on survival of Bradyrhizobium japonicum in soil aggregate. Soil Sci. Plant Nutr.

(Tokyo) 35,527-534.

Pankhurst, C. E., Scott, D. B., and Ronson, C. W. (1982). Correlation between rifampicinresistance of slow-growing Rhizobium strains and their ability to express nitrogenase

activity in culture. FEMS Microbiol. Lett. 15, 137- 139.

Peters, N. K., and Crist-Estes, D. K. ( I 989). Nodule formation is stimulated by the ethylene

inhibitor aminoethoxyvinylglycine.Plant Physiol. 91,690-693.

Phillips, D. A., and Torrey, J. G. (1970). Cytokinin production by Rhizobiurn. Physiol. Plant.

23, 1057- 1063.

Phillips, D. A., and Torrey, J. G. (1972). Studies on cytokinin production by Rhizobium

japonicum. Plant Physiol. 49, 1 I - 15.

Rasche, M. E., and Arp, D. J. (1989). Hydrogen inhibition of nitrogen reduction by nitrogenase in isolated soybean nodule bacteroids. Plant Physiol. 91,663-668.

Reid, M. S. (1987). Ethylene in plant growth, development, and senescence. Planf Horrn.

Their Role Plant Growth Dev.,257-279.

Rigaud, J., Bergersen, F. J., Turner, G . L., and Daniel, R. M. (1973). Nitrate dependent

anaerobic acetylene-reduction and nitrogen fixation by soybean bacteroids. J. Gen.

Microbiol. 77, 137 - 144.

Roberts, G. P., Leps, W. T., Silver, L. E., and Brill, W. J. (1980). Use of two-dimensional

polyacrylamide gel electrophoresis to identie and classify Rhizobium strains. Appl.

Environ. Microbiol. 39,4 14 -422.

Robson, R. L., and Postgate, J. R. (1980). Oxygen and hydrogen in biological nitrogen

fixation. Annu. Rev. Microbiol. 34, 183-207.

Ruan, X., and Peters, N. K. (1991). Rapid and sensitive assay for the phytotoxin rhizobitoxine. Appl. Environ. Microbiol. 57,2097-2 100.



Ruan, X., and Peters, N. K. (1992). Isolation and characterization of rhizobitoxine mutants

of Bradyrhizobium japonicum. J. Bacteriol. 174, 3467 - 3473.

Sadowsky, M. J., Tully, R. E., Cregan, P. B., and Keyser, H. H. (1987). Genetic diversity in

Brudyrhizobium japonicum serogroup 123 and its relation to genotype-specific nodulation of soybean. Appl. Environ. Microbiol. 53, 2624-2630.

Sawada, Y., Miyashita, K., Tanabe, I., and Kato, K. (1989). HUP phenotype and serogroup

identity of soybean-nodulatingbacteria isolated from Japanese soil. Soil Sci.Plant Nuir.

( T o ~ Y o )281-288.


Sawada, Y., Miyashita, K., and Yokoyama, T. (1990). Diversity within serogroups of Japanese isolates of Bradyrhizobium japonicum as indicated by intrinsic-antibiotic resistance.

Soil Sci. Plant Nutr. (Tokyo) 36, 50 I - 504.

Schmidt, E. L., Zidwick, M. J., and Abebe, H. M. (1986). Bradyrhizobium japonicum

serocluster 123 and diversity among member isolates. Appl. Environ. Microbiol. 51,


Sinclair, M. J., and Eaglesham, A. R. J. (1984). Intrinsic antibiotic resistance in relation to

colony morphology in three populations of west African cowpea rhizobia. Soil Biol.

Biochem. 16,247 -25 I .

Smith, G. B., and Smith, M. S. (1986). Symbiotic and free-living denitrification by Bradyrhizobium japonicum. Soil Sci. Soc. Am. J. 50, 349- 354.

Sobral, B. W. S., Honeycutt, R. J., Atherly, A. G., and Noel, K. D. (1991). Recognition and

infection in legume nodulation. Biol. Eiochem. Nitrogen Fixation. 229-258. [See also

Sobral, B. W. S., Honeycutt, R. J., Atherly, A. G., and Noel, K. D. (1991). Recognition

and infection in legume nodulation. Sfud.Plant Sci. I, 229-258.1

Sprent, J. I., Giannakis, C., and Wallace, W. (1987). Transport of nitrate and calcium into

legume root nodules. J . Exp. Eot. 38,1121 - 1 128.

Stacey, G., So, J.-S., Roth, L. E., Lakshmi S. K. B., and Carlson, R. W. (1991). A lipopolysaccharide mutant of Brudyrhizobium japonicum that uncouples plant from bacterial differentiation. Mol. Plant- Microbe Interact. 4, 332-340.

Stacey, G., Bums, R. H., and Evans, H. J., eds. (1992). “Biological Nitrogen Fixation.”

Chapman & Hall, New York.

Stanley, J., Brown, G. G., and Verma, D. P. S. (1985). Slow-growing Rhizobium japonicum

comprises two highly divergent symbiotic types. J. Bacteriol. 163, 148 - 154.

Streeter, J. G., Salminen, S. O., Whitmoyer, R. E., and Carlson, R. W. (1992). Formation of

novel polysaccharides by Brudyrhizobium japonicum bacteroids in soybean nodules.

Appl. Environ. Microbiol. 58,607 - 6 1 3.

Sturtevant, D. B., and Taller, B. J. (1989). Cytokinin production by Bradyrhizobium japonicum. Plant Physiol. 89, 1247- 1252.

Sylvester-Bradley,R., Thornton, P., and Jones, P. (1988). Colony dimorphism in Bradyrhizobium strains. Appl. Environ. Microbiol. 54, 1033- 1038.

Taller, B. J., and Sturtevant, D. B. (1991). Cytokinin production by rhizobia. Adv. Mol.

Genet. Plant- Microbe Interact. Proc. Int. Symp., 5th, 1990, 1,2 15 - 22 1. [Seealso Taller,

B. J., and Sturtevant, D. B. (1991). Cytokinin production by rhizobia. Curr. Plant Sci.

Biotechnol. Agric. 10, 2 15 - 22 I .]

Teaney 111, G. B. ( 199 I ). Physiological response of soybean to nodulation by rhizobitoxineproducing strains of Bradyrhizobium japonicum and factors influencing the expression

of rhizobitoxine-indud chlorosis. M.S. Thesis, University of Delaware, Newark, Delaware.

Teaney 111, G. B., and Fuhrmann, J. J. (1992). Soybean response to nodulation by bradyrhizobia differing in rhizobitoxine phenotype. Plant Soil 145,275-285.

Thompson, J. A., Bhromsiri, A., Shutsrirung, A., and Lillakan, S. (1991). Native root-nodule



bacteria of traditional soybean-growing areas of northern Thailand. Plant Soil 135,


Upchurch, R.G., and Elkan, G. H. (1977).Comparison of colony morphology, salt tolerance,

and effectiveness in Rhizobium japonicum. Can. J. Microbiol. 23, 1 I I8 - 1 122.

Uratsu, S. L., Keyser, H. H., Weber, D. F., and Lim, S. T. (1982). Hydrogen uptake (HUP)

activity of Rhizobium japonicum from major U.S. soybean production areas. Crop Sci.


van Berkum, P. (1987). Expression of uptake hydrogenase and hydrogen oxidation during

heterotrophic growth of Bradyrhizobium japonicum. J. Bacteriol. 169,4565 -4569.

van Berkum, P. (1990). Evidence for a third uptake hydrogenase phenotype among the

soybean bradyrhizobia. Appl. Environ. Microbiol. 56, 3855 - 3860.

van Berkum, P., and Keyser, H. H. (1985). Anaerobic growth and denitrification among

different serogroups of soybean rhizobia. Appl. Environ. Microbiol. 49, 772-777.

van Berkum, P., and Sloger, C. (1991). Hydrogen oxidation by the hostcontrolled uptake

hydrogenase phenotype of Bradyrhizobium japonicum in symbiosis with soybean host

plants. Appl. Environ. Microbiol. 57, I863 - 1865.

van Berkum, P., Keyser, H. H., and Weber, D. F. (1985). Examination of Hup expression by

soybean bradyrhizobia belonging to different serogroup phenotypes. Nitrogen Fixation

Res. Prog. Proc. Int. Symp., 6th 361.

Vasilas, B. L., and Fuhrmann, J. J. (1993). Field response of soybean to nodulation by a

rhizobitoxine-producing strain of Bradyrhizobium. Agron. J. 85, 302 - 305.

Velez, D., Macmillan, J. D., and Miller, L. (1988). Production and use of monoclonal

antibodies for identification of Bradyrhizobium japonicum strains. Can. J. Microbiol. 34,

88 - 92.

Vest, G. (1970). Rj,-A gene conditioning ineffective nodulation in soybean. Crop Sci. 10,


Vest, G., and Caldwell, B. E. (1972). Rj,-A gene conditioning ineffective nodulation in

soybean. Crop Sci. 12,692-693.

Vidor, C., and Miller, R. H. (1980). Relative saprophytic competence of Rhizobiurn japonicum strains in soils as determined by the quantitative fluorescent antibody technique

(FA). Soil Biol. Biochem. 12,483-487.

Vincent, J. M. (1982). Serology.Nitrogen Fixation 2,235-273.

Viteri, S . E., and Schmidt, E. L. (1989). Chemoautotrophy as a strategy in the ecology of

indigenous soil bradyrhizobia. Soil Biol. Biochem. 21,461 -463.

Weber, D. F., and Miller, V. L. (1972). Effect of soil temperature on Rhizobium japonicum

serogroup distribution in soybean nodules. Agron. J. 64,796-798.

Weber, D. F., Keyser, H. H., and Uratsu, S. L. (1989). Serological distribution of Bradyrhizv

bium japonicum from U.S. soybean production areas. Agron. J. 81,786-789.

Weiser, G . C., Skipper, H. D., and Wollum 11, A. G. (1990). Exclusion of inefficient Bradyrhizobium japoncium serogroups by soybean genotypes. Plant Soil 121,99 - 105.

Wollum 11, A. G. (1987). Serological techniques for Bradyrhizobium and Rhizobium identification. In “Symbiotic Nitrogen Fixation Technology” (G. H. Elkan, ed.),pp. 149- 155.

Dekker, New York.

Young, C. C., and Chao, C. C. (1989). Intrinsic antibiotic resistance and competition in fastand slow-growing soybean rhizobia on a hybrid of Asian and US cultivars. Biol. Fertil.

Soils 8.66 - 70.

Zaat, S. A. J., VanBrussel, A. A. N., Tak,T., Lugtenberg, B. J. J., and Kijne, J. W. (1989).

The ethylene-inhibitor aminoethoxyvinylglycine restores normal nodulation by R h i z v

bium leguminosarum biovar. viciae on Vicia saliva subsp. nigru by suppressing the ‘thick

and short roots’phenotype. Planta 177, I4 I - 150.

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

V. Taxonomic Status of Bradyrhizobium japonicum

Tải bản đầy đủ ngay(0 tr)