1. Trang chủ >
  2. Khoa Học Tự Nhiên >
  3. Hóa học - Dầu khí >

VI. Microbial Reduction of Other Metals

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (19.23 MB, 371 trang )

2 16


cury from contaminated environments (Goldstein et al., 1988; Barkay et al., 199 1 ;

Ogunseitan and Olson, 1991).


Microorganisms can enzymatically catalyze the reduction of a large number of

metals. For abundant metals such as Fe(II1) and Mn(IV), microorganisms have

evolved specific metabolic systems which permit them to conserve energy to

support growth by coupling the oxidation of organic matter to metal reduction.

Microbial Fe(II1) reduction accounts for most of the Fe(II1) reduction in many

anoxic soils and aquatic sediments. Nonenzymatic processes such as the reduction of Fe(II1) by organic compounds and sulfide are generally of minor significance. Mn(1V) reduction is more susceptible to reduction by nonenzymatic

processes, but enzymatic Mn(1V) reduction does predominate in some environments. Fe(II1) and Mn(IV) reduction are major processes for decomposition of

naturally occurring organic matter in some soils and sediments and can play an

important role in the degradation of organic contaminants. The microbial reduction of insoluble Fe(II1) and Mn(1V) oxides increases the solubility of these metals, releases nutrients and metals that were adsorbed on the oxides, leads to the

formation of new Fe(I1)- and Mn(I1)-containing minerals, and alters a variety of

soil properties. These changes can be both beneficial and detrimental to plant


Many Fe(II1)- and Mn(1V)-reducing microorganisms can also reduce highly

soluble U(V1) to insoluble U(1V). Microbial U(V1) reduction provides a likely

explanation for the reductive precipitation of uranium in anoxic soils and sediments. Furthermore, U(V1)-reducing microorganisms might be useful agents for

the bioremediation of uranium-contaminated environments.

In a similar manner, the microbial reduction of soluble selenate to insoluble Se'

removes selenium from water and this metabolism can be employed to immobilize

selenium in environments with high selenium concentrations. Microorganisms

can reduce highly soluble and toxic Cr(V1) to Cr(III), which is less soluble and

less toxic. However, the environmental significance of this metabolism and its

utility as a bioremediation technique have yet to be clearly demonstrated. Some

microorganisms can enzymatically reduce other metals such as mercury, vanadium, molybdenum, copper, gold, silver, and technetium. This metabolism may

affect the fate and mobility of these metals.

Although recent studies have demonstrated the importance of microbial metal

reduction and have identified organisms which may serve as models for this metabolism, very little is known about the biochemistry of this process. There is little

information on the organisms that are responsible for enzymatic metal reduction



in natural environments. It is not clear whether the metal-reducing microorganisms that are available in pure culture are representative of the important metal

reducers in soils and sediments. Further studies on the biochemistry and microbial

ecology of metal reduction would enhance our understanding of the factors controlling the rate and extent of this important process.


Adeney, W.E. 1894. On the reduction of manganese peroxide in sewage. Sci. Proc. R. Dublin SOC. 8,


Adriano, D. C., Page, A. L., Elseewi, A. A., Chang, A. C., and Straughan, I. 1980. Utilization and

disposal of fly ash and other coal residues in terrestrial ecosystems: A review. J. Environ. Qual.


Alemi, M. H., Goldhamer, D. A., and Nielsen, D. R. 1988. Elution of selenium from contaminated

evaporation pond sediments. J. Environ. Qual. 17,613-618.

Aller, R. C. 1980. Diagenetic processes near the sediment-waterinterface of Long Island Sound. II. Fe

and Mn. In “Estuarine Physics and Chemistry: Studies in Long Island Sound” (B. Saltzman,

ed.), pp. 35 1-415. Academic Press, New York.

Aller, R. C. 1990. Bioturbation and manganese cycling in hemipelagic sediments. Philos. Trans. R.

SOC.London Ser. A 331,51-68.

Aller, R. C., Macklin, J. E., and Cox, R. T.J. 1986. Diagenesis of Fe and S in Amazon inner shelf

muds: Apparent dominance of Fe reduction and implications for the genesis of ironstones. Conr.

Shelf Res. 6,263-289.

Aller, R. C., and Rude, P. D. 1988. Complete oxidation of solid phase sulfides by manganese and

bacteria in anoxic marine sediments. Geochim. Cosmochim. Acta 52,75 1-765.

Allison, L. E., and Scarseth, G. D. 1942. A biological reduction method for removing free iron oxides

from soils and colloidal clays. J. Am. Soc. Agron. 34,616-623.

Altringer, P. B., Lien, R. H., and Gardner, K. R. 1991.Biological and chemical selenium removal from

precious metals solutions. In “Environmental Management for the 1990s” (D. J. Lootens, W. M.

Greenslade, and J. M. Barker, eds.), pp. 135- 142. Society for Mining, Metallurgy, and Exploration, Littleton, CO.

Anderson, R. F. 1987. Redox behavior of uranium in an anoxic marine basin. Uranium 3, 145- 164.

Anderson, R. F., Fleisher, M. Q., and LeHuray, A. P. 1989a. Concentration, oxidation state, and particulate flux of uranium in the Black Sea. Geochim. Cosmochim. Acra 53,2215-2224.

Anderson, R. F., LeHuray, A. P., Fleisher, M. Q., and Murray, J. W. 1989b. Uranium deposition in

Saanich Inlet sediments, Vancouver Island. Geochim. Cosmochim. Acta 53,2205-221 3.

Aristovskaya, T. V., and Zavarzin, G. A. 197I . Biochemistry of Iron in Soil. In “Soil Biochemistry”

(A. D. McLaren and J. Skujins, eds.), pp. 385-408. Dekker, New York.

Arnold, R. G., DiChristina, T. J., and Hoffmann, M. R. 1986. Inhibitor studies of dissimilative Fe(II1)

reduction by Pseudomonas sp. Strain 200 ( “Pseudomonasferrireductans”). Appl. Environ. Microbiol. 52,281 -289.

Arnold, R. G., DiChristina, T. J., and Hoffmann, M. R. 1988. Reductive dissolution of Fe(II1) oxides

by Pseudomonas sp. 200. Biotech. Bioeng. 32, I08 1 - 1096.

Arnold, R. G., Hoffman, M. R., DiChristina,T.J., and Picardal, F. W. 1990. Regulation of dissimilatory

Fe(II1) reduction activity in Shewanella putrefmiens. Appl. Environ. Microbiol. 56,281 1-2817.

Back, W., and Barnes, I. 1965. Relation of electrochemicalpotentials and iron content to ground-water



flow patterns. Geological Survey Professional Paper 498-C. United States Government Printing

Office, Washington, DC.

Bacon, M., and Ingledew, W. J. 1989. The reductive reactions of Thiobacillusferrooxidans on sulphur

and selenium. FEMS Microbiol. Lett. 58, 189- 194.

Baedecker, M. J., and Back, W. 1979. Modem marine sediments as a natural analog to the chemically

stressed environment of a landfill. J. Hydrol. 43,393-414.

Baedecker, M. J., Cozzarelli, I. M., Siegel, D. I., Bennett, P. C., and Eganhouse, R. P.1993. Crude oil

in a shallow sand and gravel aquifer: 3. Biogeochemical reactions and mass balance modeling in

anoxic ground water. Appl. Geochem. 8,569-586.

Balashova, V. V., and Zavarzin, G. A. 1980. Anaerobic reduction of ferric iron by hydrogen bacteria.

Microbiology 48,635-639.

Barkay, T., Gillman, M., and Liebert, C. 1990. Genes encoding mercuric reductases from selected

gram-negative aquatic bacteria have a low degree of homology with merA of transposon Tn501.

Appl. Environ. Microbiol.56, 1695- 170 1.

Barkay, T., Liebert, C., and Gillman, M. 1989. Environmental significance of the potential for

mer(Tn21)mediated reduction of Hg2+to HgO in natural waters. Appl. Environ. Microbiol. 55,

1196- 1202.

Barkay, T., Turner, R. R., VandenBrook, A,, and Liebert, C. 1991. The relationshipsof Hg(II) volatilization from a freshwater pond to the abundance of mer genes in the gene pool of the indigenous

microbial community. Microb. Ecol. 21, 151- 161.

Barnes, C. E., and Cochran, J. K. 1993. Uranium geochemistry in estuarine sediments: Controls on

removal and release processes. Geochim. Cosmochim. Acra 57,555-569.

Bartlett, R. J. 1991. Chromium cycling in soils and water: Links, gaps, and methods. Environ. Health

Perspecr. 92, 17-24.

Baruthio, F. 1992. Toxic effects of chromium and its compounds. Biol. Trace Elemenr Res. 32,


Baur, M. E., Hayes, J. M., Studley, S. A., and Walter, M. R. 1985. Millimeter-scalevariations of stable

isotope abundances in carbonatesfrom banded iron-formations in the Hamersley Group of Westem Australia. Econ. Geol. SO, 270-282.

Bautista, E. M., and Alexander, M. 1972. Reduction of inorganic compounds by soil microorganisms.

Soil Sci. Soc. Amer. Proc. 36,918-920.

Bazylinski, D. A., Frankel, R. B., and Jannasch, H. W. 1988. Anaerobic magnetite production by a

marine, magnetotactic bacterium. Narure 334,5 18-5 19.

Billen, G. 1982. Modelling the processes of organic matter degradation and nutrients recycling in

sedimentary systems. In “Sediment Microbiology” (D. B. Nedwell and C. M. Brown, eds.),

pp. 15-52. Academic Press, New York.

Blake, R. C., Choate, D. M., Bardhan, S., Revis, N., Barton, L. L., and Zocco, T. G. 1993. Chemical

transformation of toxic metals by a Pseudomonasstrain from a toxic waste site. Environ. Toxicol.

Chem. 12, 1365-1376.

Blakemore, R. P. 1982. Magnetotactic bacteria. Annu. Rev. Microbiol. 36,217-238.

Bloomfield, C. 1950. Some observations on gleying. J. Soil Sci. 1,205-21 1.

Bopp, L. H., and Ehrlich, H. L. 1988. Chromate resistance and reduction in PseudomonasJSuorescens .

strain LB300. Arch. Microbiol. 150,426-431.

Bostrom, K. 1967. Some pH-controlling redox reactions in naturals waters. In “Equilibrium Concepts

in Natural Waters” (R. F. Gould, ed.), pp. 286-3 11. American Chemical Society, Washington,


Bradford, G.R., Bakhtar, D., and Westcot, D. 1990. Uranium, vanadium, and molybdenum in saline

waters of California. J. Environ. Qual. 19, 105-108.

Brannon, J. M., Gunnison, D., Smart, R. M., and Chen, R. L. 1984. Effects of added organic matter on

iron and manganese redox systems in sediment. Geomicrobiol. J. 3,319-341.



Brierley, J. A., and Brierley, C. L. 1980. Biological methods to remove selected inorganic pollutants

from uranium mine wastewater. It? "Biogeochemistry of Ancient and Modern Environments"

(P. A. Trudinger, M. R. Walter, and B. J. Ralph, eds.), pp. 661-667. Springer-Verlag. New York.

Bromfield. S. M. 1954a. Reduction of ferric compounds by soil bacteria. J. Gen. MiCrcJhd. 11, 1-6.

Bromfield, S. M. 1954b. The reduction of iron oxide by bacteria. J . Soil. Sci. 5, 129- 139.

Brown, N. L. 1985. Bacterial resistance to mercury-reductio ad absurdum'? Trends Biocheni. Sci. 41,


Burdige, D. J. 1993. The biogeochemistry of manganese and iron reduction in marine sediments.

Earth-Sci. Rev. 35,249-284.

Burdige, D. J., Dhakar, S. P., and Nealson, K. H. 1992. Effects of manganese oxide mineralogy on

microbial and chemical manganese reduction. Geotnicrobiol. J. 10,27-48.

Burdige, D. J., and Gieskes, I. M. 1983. A pore waterkolid phase diagenetic model for manganese in

marine sediments. Anz. J. Sci. 283, 29-47.

Burdige, D. J., and Nealson, K. H. 1985. Microbial manganese reduction by enrichment cultures from

coastal marine sediments. Appl. Environ. Microbiol. 50,491 -497.

Burdige, D. J., and Nealson, K. H. 1986. Chemical and microbiological studies of sulfide-mediated

manganese reduction. Geomicrobiol. J . 4,361 -387.

Burgess, J. G., Kawaguchi, R., Sakaguchi, T., Thornhill, R. H., and Matsunaga, T. 1993. Evolutionary

relationships among Magnetospirillum strains inferred from phylogenetic analysis of 16s rRNA

sequences. J . Bacreriol. 175,6689-6694.

Burton, G. A,, Jr., Giddings, T. H., DeBrine, P., and Fall, R. 1987. High incidence of selenite-resistant

bacteria from a site polluted with selenium. Appl. En1,iron. Microbiol. 53, 185- 188.

Caccavo, F., Jr., Blakemore, R. P., and Lovley, D. R. 1992. A hydrogen-oxidizing, Fe(II1)-reducing

microorganism from the Great Bay Estuary, New Hampshire. Appl. Environ. Microbiol. 58,

321 1-3216.

Caccavo, F., Jr., Mclnerney, M. J., Davis, M., and Stolz, J. F. 1994. Geohacter acetoxidrrns sp. nov., a

novel dissimilatory metal- and sulfur-reducing microorganism. Submitted for publication.

Canfield, D. E. 1989. Reactive iron in marine sediments. Geochim. Cosntochim. Acra 53, 619-632.

Canfield, D. E., Jorgensen, B. B., Fossing, H., Glud, R., Gundersen, J., Ramsing, N. B., Thamdrup, B.,

Hansen, J. W., Nielsen, L. P., and Hall, P. 0. J. 1993b. Pathways of organic carbon oxidation in

three continental margin sediments. Mar. Ceol. 113,27-40.

Canfield, D. E., Thamdrup, B., and Hansen, J. W. 1993a. The anaerobic degradation of organic matter

in Danish coastal sediments: Fe reduction, Mn reduction, and sulfate reduction. Geochini. Costnochim. Acta 57,3867-3883.

Cannac, V., Caffrey, M. S., Voordouw, G., and Cusanovich, M. A. 1991. Expression of the gene encoding cytochrome c , from the sulfate-reducing bacterium Desulfovibrio vulgaris into the purple

photosynthetic bacterium Rhodobacter sphoeroides. Arch. Biochem. Biophys. 286,629-632.

Cervantes, C. 199 I . Bacterial interactions with chromate. Antonie van Leeuwenhoek 59,229-233.

Cervantes, C., and Silver, S. 1992. Plasmid chromate resistance and chromate reduction. Plasmid 27,


Chapelle, F. H., and Lovley, D. R. 1992. Competitive exclusion of sulfate reduction by Fe(I1I)reducing bacteria: A mechanism for producing discrete zones of high-iron ground water. Ground

Water 30,29-36.

Coates, J. D., Lovley, D. R., and Lonergan, D. J. 1994. Geobncter hydrogmophilia. a dissimilatory

Fe(II1) reducer capable of oxidizing HZand formate as well as acetate. Submitted for publication.

Cochran, J. K., Carey, A. E., Sholkovitz, E. R., and Surprenant, L. D. 1986. The geochemistry of

uranium and thorium in coastal marine sediments and sediment pore waters. Geochinz. Costnochim. Actn 50,663-680.

Coleman, M. L., Hedrick, D. B., Lovley, D. R., White, D. C., and Pye, K. 1993. Reduction of Fe(II1)

in sediments by sulphate-reducing bacteria. Nriture 361,436-438.



Corbett, C. M., and Ingledew, W. J. 1987. Is Fe3+/2+

cycling an intermediate in sulphur oxidation by

Fe’+-grown Thiobacillus ferrooxidans? FEMS Microbiol. Left 41,l-6.

Comell, R. M., Schneider, W., and Giovanoli, R. 1989. Phase transformations in the ferrihydritel

cysteine system. Polyhedron 8,2829-2836.

Comwell, J. C., and Kipphut, G. W. 1992. Biogeochemistry of manganese- and iron-rich sediments in

Toolik Lake, Alaska. Hydrobiology 240,45-59.

Dailey, H. A. J., and Lascelles, J. 1977. reduction of iron and synthesis of protoheme by Spirillum

itersonii and other organisms. J. Bacferiol. 129,815-820.

Das, S., and Chandra, A. L. 1990. Chromate reduction in Strepromyces. Experienfia46,73 1-733.

De Castro, A. F., and Ehrlich, H. L. 1970. Reduction of iron oxide minerals by a marine Bacillus.

Antonie van Leeuwenhoek 36,311-327.

DeLong, E. F., Frankel, R. B., and Bazylinski, D. A. 1993. Multiple evolutionary origins of magnetotaxis in bacteria. Science 259,803-806.

DeMoll-Decker, H., and Macy, J. M. 1993. The periplasmic nitrite reductase of Thauera selenafis may

catalyze the reduction of selenite to elemental selenium. Arch. Microbiol. 160,241-247.

De Vrind, J. P. M., Boogerd, F. C., and de Vrind-de Jong, E. W. 1986. Manganese reduction by a

marine Bacillus species. J. Bacferiol. 167,30-34.

DiChristina, T.J. 1992. Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella

pufrefaciens 200. J. Bacteriol. 174, 1891 - 1896.

DiChristina, T. J., Arnold, R. G., Lidstrom, M. E., and Hoffmann, M. R. 1988. Dissimilative iron

reduction by the marine eubacterium Alferomonas putrefaciens Strain 200. Waf. Sci. Tech. 20,


DiChristina, T.J., and DeLong, E. F. 1993. Design and application of rRNA-targeted oligonucleotide

probes for dissimilatoryiron- and manganese-reducing bacterium Shewanella pufrefaciens.Appl.

Environ. Microbiol. 59,4152-4160.

Di-Ruggiero, J., and Gounot, A. M. 1990. Microbial manganese reduction mediated by bacterial

strains isolated from aquifer sediments. Microb. Ecol. 20,53-63.

Dixon, J. B., and Skinner, H. C. W. 1992. Manganese minerals in surface environments. In “Biomineralization Processes of Iron and Manganese” (H. C. W. Skinner and R. W. Fitzpatrick, eds.),

pp. 31-50. Catena Verlag, Germany.

Doran, J. W. 1982. Microorganisms and the biological cycling of selenium. Adv. Microbial. Ecol, 6,


Doran, J. W., and Alexander, M. 1977. Microbial formation of volatile Se compounds in soil. Soil Sci.

SOC.Am. J. 40,687-690.

Durrance, E. M. 1986. “Radioactivity in Geology.” Wiley, New York.

Eden, P. A., Schmidt, T.M., Blakemore, R. P., and Pace, N. R. 1991. Phylogenetic analysis of Aquaspirillum magnefofacficumusing PCR-amplified 16s ribosomal RNA-specific DNA. In “Iron

Biominerals” (R. B. Frankel and R. P. Blakemore, eds.), pp. 127- 130. Plenum, New York.

Ehrlich, G. G., Godsy, E. M., Goerlitz, D. F., and Hult, M. F. 1983. Microbial ecology of a creosotecontaminated aquifer at St. Louis Park, Minnesota. Dev.Ind. Microbiol. 24,235-245.

Ehrlich, H. L. 1993. Electron transfer from acetate to the surface of MnO, particles by a marine

bacterium. J. Indusfr. Microbiol. 12, 121- 128.

Ehrlich, H. L., Yang, S. H., and Mainwaring, J., J.D. 1973. Bacteriology of manganese nodules.

VI. Fate of copper, nickel, cobalt, and iron during bacterial and chemical reduction of the man2 A@. Mikrobiol. 13,39-48.

ganese (N).

Eisen, G. V. 1985. “Physiological Studies on Iron-Reducing Closfridia. Masters thesis, San Francisco

State University.

Ellis-Evans, J. C., and Lemon, E. C. G. 1989. Some aspects of iron cycling in maritime antarctic lakes.

Hydrobiology 172, 149- 164.

Ellwood, B. B., Chrzanowski, T. H., Hrouda, F., Long, G . J., and Buhl, M. L. 1988. Siderite formation


22 1

in anoxic deep-sea sediments: A synergetic bacterially controlled process with important implications in paleomagnetism. Geology 16,980-982.

Elmore, R. D., Engel, M. H., Crawford, L., Nick, K., Imbus, S., and Sofer, Z. 1987. Evidence for a

relationship between hydrocarbons and authigenic magnetite. Noture 325,428-430.

Farina, M., Esquivel, D. M. S., and Lins de Barros, H. G. P. 1990. Magnetic iron-sulphur crystals from

a magnetotactic microorganism. Ncrture 343,256-258.

Fassbinder, J. W. E., Stanjek, H., and Vali, H. 1990. Occurrence of magnetic bacteria in soil. Nature

343, 161-163.

Fischer, W. R. 1988. Microbiological reactions of iron in soils. In “Iron in Soils and Clay Minerals”

(J. W. Stucki, B. A. Goodman, and U. Schwertmann. eds.), pp. 715-748. D. Reidel Publishing

Co., Boston.

Francis, A. J., and Dodge, C. J. 1989. Aerobic and anaerobic microbial dissolution of toxic metals

from coal wastes: Mechanisms of action. Environ. Sci. Techno/.23,435-441.

Francis, A. J., and Dodge, C. J. 1990. Anaerobic microbial remobilization of toxic metals coprecipitated with iron oxide. Environ. Sci. Techno/. 24,373-378.

Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin,

P., Hammond, D., Hartman, B., and Maynard, V. 1979. Early oxidation of organic matter in

pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochim. Cosmochini.

Acfa 43, I075 - 1090.

Gerhardt, M. B., Green, F. B., Newman, D., Lundquist, T. J., Tresan, R. B., and Oswald, W. J. 1991.

Removal of selenium using a novel algal-bacterial process. Res. J. Water Pollur. Control Fed. 63,


Ghiorse, W. C. 1988. Microbial reduction of manganese and iron. In “Biology of Anaerobic Microorganisms” (A. J. B. Zehnder, ed.), pp. 305-331. Wiley, New York.

Gold, T. 1992. The deep, hot biosphere. Proc. Nut/. Acacl. Sci. USA 89,6045-6049.

Goldberg, S. 1989. Interaction of aluminum and iron oxides and clay minerals and their effect on soil

physical properties: A review. Conimun. S o i l Sci. Planr Anal. 20, 1 181- 1207.

Goldhaber, M. B., and Kaplan, I. R. 1974. The sulfur cycle. In “The Sea” (E. D. Goldberg, ed.),

pp. 569-655. Wiley, New York.

Goldstein, R. A,, Olson, B. H., and Porcella, D. B. 1988. Conceptual model of genetic regulation of

mercury biogeochemical cycling. Environ. Techno/. Lett. 9,957-964.

Gorby, Y., and Lovley, D. R. 1991. Electron transport in the dissimilatory iron-reducer, GS-15. Appl.

Environ. Microbiol. 57, 867-870.

Gorby, Y. A., and Lovley, D. R. 1992. Enzymatic uranium precipitation. Environ. Sci. Techno/. 26,

205 -207.

Gottfreund, E., Gottfreund. J., Gerber, I., Schmitt, G., and Schweisfurth, R. 1985a. Occurrence and

activities of bacteria in the unsaturated and saturated underground in relation to the removal of

iron and manganese. Wcit. Supp. 3, 109-1 15.

Gottfreund, J., Schmitt, G., and Schweisfurth, R. 1985b. Wertigkeitswechsel von Manganspecies

durch Bakterien in Nahrlosugen und in Lockergestein. Landwirtsch. Forschung 38,80-86.

Guerin, W. F., and Blakemore, R. P. 1992. Redox cycling of irn supports growth and magnetite synthesis by Ayucispirillurn magnetotacticurn. Appl. Environ. Microbiol. 58, 1 102- 1 109.

Gvozdyak, P. I., Mogilevich, N. F., Ryl’skii, A. F., and Grishchenko, N. I. 1987. Reduction of hexavalent chromium by collection strains of bacteria. Microbiology 55,770-773.

Hammann, R.. and Ottow, J. C. G. 1974. Reductive dissolution of Fe,O, by saccharolytic Clostridia

and Bacillus polyrnyxo under anaerobic conditions. Z. ffcin,-enernoehr. Bodenkd. 137, 108- 1 15.

Harder, E. C. 1919. Iron-depositing bacteria and their geologic relations. U S . Geological Survey Professional Paper I 13. Government Printing Office, Washington, DC.

Hardoyo, J. K., and Ohtake, H. 1991. Effects of heavy metal cations on chromate reduction by Enterobucter c/ocic(ie strain HO I . J. Cen. Appl. Microhiol. 37,5 19-522.



Hartman, H. 1984. The evolution of photosynthesis and microbial mats: A speculation on the banded

iron formations. In “Microbial Mats: Stromatolites” (B. Crawford, ed.), pp. 449-453. A. R. Liss,

New York.

Heider, J., and Bock, A. 1993. Selenium metabolism in micro-organisms. Adv. Mlcrob. Physiol. 35,

71 - 109.

Heijman, C. G.,Holliger, C., Glaus, M. A., Schwarzenbach, R. P., and Zeyer, J. 1993. Abiotic reduction of 4chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl. Environ. Microbiol. 59,4350-4353.

Hem, I. D. 1972. Chemical factors that influence the availability of iron and manganese in aqueous

systems. Geol. SOC.Amer. Bull. 83,443-450.

Hines, M. E., Bazylinski, D. A., Tugel, J. B., and Lyons, W. B. 1991. Anaerobic microbial biogeochemishy in sediments from two basins in the Gulf of Maine: Evidence for iron and manganese

reduction. Estur. Const. ShelfSci. 32,3 13-324.

Hintz, I., Kiss, S., Papacostea, P.,Radulescu, D., and Dragan-Bularda, M. 1977). In “Application of a

Microbiological Method for Diminution of Fe203Content of Kaolins.” Fourth Symp. Soil Biol.,

(Cluj-Napoca), Rumanian Nat. SOC.Soil Sci., Bucharest.

Hoffman, B. A. 1990. Reduction spheroids from northern Switzerland: Mineralogy, geochemistry and

genetic models. Chem. Geol. 81,55-81.

Horitsu, H., Futo, S., Miyazawa, Y., Ogai, S., and Kawai, K. 1987. Enzymatic reduction of hexavalent

chromium by hexavalent chromium tolerant Pseudoinonas umbiguu G-1. Agric. Biol. Chem. 51,


Hostetler, P. B., and Garrels, R. M. 1962. Transportation and precipitation of uranium and vanadium at low temperatures with special reference to sandstone-type uranium. Econ. Geol. 57,

137- 167.

Howeler, R. H.,and Bouldin, D. R. 1971. The diffusion and consumption of oxygen in submerged

soils. Soil Sci. SOC.Amer. Proc. 35,202-208.

Humenick, M. J., and Mattox, C. F. 1978. Groundwater pollutants from underground coal gasification.

War. Res. 12,463-469.

Ishibashi, Y.,Cervantes, C., and Silver, S. 1990. Chromium reduction in Pseudomonusputida. Appl.

Environ. Microbiol. 56,2268-2270.

Jacq, V. A., Prade, K., and Ottow, J. C. G. 1991. Iron sulfide accumulation in the rhizosphere of

wetland rice (Oryzu sarivu L.) as the result of microbial activities. In “Diversity of Environmental

Biogeochemistry” (J. Berthelin, ed.), pp. 453-468. Elsevier, New York.

Jansson. M. 1987. Anaerobic dissolution of iron-phosphorus complexes in sediment due to the activity

of nitrate-reducing bacteria. Microb. Ecol. 1 4 , s 1-89.

Jaudon, P., Massiani, J. G.,Rey, J., and Vacelet, E. 1989. Groundwater pollution by manganese. Manganese speciation: application to the selection and discussion of an in situ groundwater treatment.

Sci. Tot. Environ. 84, 169-183.

Jensen, M. L. 1958. Sulfur isotopes and the origin of sandstone-type uranium deposits. Econ. Geol.


Jones, J. G.,Gardener, S., and Simon, B. M. 1983. Bacterial reduction of ferric iron in a stratified

eutrophic lake. J. Gen. Microbiol. 129, 13I - 139.

Jones, J. G.,Gardener, S., and Simon, B. M. 1984. Reduction of ferric iron by heterotrophic bacteria

in lake sediments. J. Gen. Microbiol. 130,45-5 1.

J ~ g e n s e n B.

, B. 1978. A comparison of methods for the quantification of bacterial sulfate reduction

in coastal m i n e sediments. 1. Measurement with radiotracer techniques. Geomicrobiol. J. 1,


Kamura, T., Takai, Y.,and Ishikawa, K. 1963. Microbial reduction mechanism of ferric iron in paddy

soils. Soil Sci. Plant Nutr. 9, 171-175.

Karavaiko, G. I., Yurchenko, V. A., Remizov, V. I., and Klyushnikova, T. M. 1987. Reduction of



manganese dioxide by cell-freeAcinetobacfercalcoacelicus extracts. Microbiology 55,553 -558.

Karlin, R., Lyle, M., and Heath, G. R. 1987. Authigenic magnetite formation in suboxic marine sediments. Narure 326,490-493.

Kauffman, J. W., Laughlin, W. C., and Baldwin, R. A. 1986. Microbiological treatment of uranium

mine waters. Environ. Sci. Technol. 20,243-248.

King, G. M. 1990. Effects of added manganic and femc oxides on sulfate reduction and sulfide oxidation in intertidal sediments. FEMS Microbiol. Ecol. 73, 131-138.

Kino, K., and Usami, S. 1982. Biological reduction of ferric iron by iron- and sulfur-oxidizingbacteria. Agric. Biol. Chem. 46,803-805.

Klinkhammer, G. P. 1980. Early diagenesis in sediments from the eastern equatorial Pacific. 11. Pore

water metal results. Earrh Planer. Sci. Leu. 49,81- 101.

Klinkhammer. G. P.,and Palmer, M. R. 1991. Uranium in the oceans: Where it goes and why. Geochim. Cosmochim. Acra 55,1799-1806.

Komori, K., Rivas, A., Toda, K., and Ohtake, H. 1990a. Biological removal of toxic chromium using

an Enrerobacrer cloacae strain that reduces chromate under anaerobic conditions. Biorechnol.

Bioeng. 35,95 1-954.

Komori, K., Rivas, A., Toda, K., and Ohtake, H. 1990b. A method for removal of toxic chromium

using dialysis-sac cultures of a chromate-reducingstrain of Enterobacter cloacae. AppL Microbiol. Biorechnol. 33, 1 17- 119.

Komori, K., Wang, P., Toda, K., and Ohtake, H. 1989. Factors affecting chromate reduction in Enrerobacter cloacae strain H01. Appl. Microbiol. Biotechnol. 31,567-570.

Krishnamurti,G. S. R., and Huang, P. M. 1987. The catalytic role of birnessite in the transformation

of iron. Can. J. Soil Sci. 67,533-543.

Kvasnikov, E. I., Stepanyuk. V. V.,Klyushnikova, T. M., Serpokrylov, N. S., Simonova, G. A., Kasatkina, T. P., and Panchenko, L. P. 1985. A new chromium-reducing,gram-variable bacyerium with

mixed type of flagellation. Microbiol. 54,69-75.

LaKind, J. S., and Stone, A. T. 1989. Reductive dissolution of goethite by phenolic reductants. Geochim. Cosmochim. Acra 53,961-971.

Landa, E. R., Phillips, E. J. P., and Lovley, D. R. 1992. Release of 226-Ra from uranium mi11 tailings

by microbial Fe(II1) reduction. Appl. Geochem. 6,647-652.

Langmuir, D. 1978. Uranium solution-mineralequilibria at low temperatureswith applications to sedimentary ore deposits. Geochim. Cosmochim. Acra 42,547-569.

Lascelles,I., and Burke, K. A. 1978. Reduction of ferric iron by L-lactate and ~~-glycerol-3-phosphate

in membrane preparations from Staphylococcus aureus and interactionswith the nitrate reductase

system. J. Bacreriol. 134,585-589.

Lebedeva, E. V., and Lyalikova, N. N. 1979. Reduction of crocoite by Pseudomonas Chromarophila

sp. nov. Microbiology 48,5 17-522.

LeGall, J., and Fauque, G. 1988. Dissimilatory reduction of sulfur compounds. In “Biology of Anaerobic Microorganisms” (A. J. B. Zehnder, ed.), pp. 587-639. Wiley, New York.

Litaor, M. I., and Keigley, R. B. 1991. Geochemical equilibria of iron in sediments of the rorarine

river alluvial fan, Rocky Mountain National Park, Colorado. Ear?h Surf: Proc. Landfonns 16,


Llovera, S., Bonet, R., Simon-Pujol,M. D., and Congregado, F. 1993. Chromate reduction by resting

cells of Agrobacrerium radiobacrer EPS-916. Appl. Environ. Microbiol. 59,35 16-3518.

Lonergan, D. J., and Lovley, D. R. 1991. Microbial oxidation of natural and anthropogenic aromatic

compounds coupled to Fe(1II) reduction. In “Organic Substancesand Sediments in Water” (R. A.

Baker, ed.), pp. 327-338. Lewis Publishers, Inc., Chelsea, MI.

Long, R. H. B., Benson, S. M., Tokunaga, T. K., and Yee, A. 1990. Selenium immobilization in a pond

sediment at Kesterson Reservoir. J. Environ. Qual. 19,302-31 1.

Lortie, L., Gould, W. D., Rajan, W., McCready, R. G. L., and Cheng, K.-J. 1992. Reduction of selenate



and selenite to elemental selenium by a Pseudomonas srutzeri isolate. Appl. Environ. Microbiol.


Lovley, D. R. 1987. Organic matter mineralization with the reduction of ferric iron: A review. Geomicrobiol. J. 5,375-399.

Lovley, D. R. 1990. Magnetite formation during microbial dissimilatory iron reduction. In “Iron

Biominerals” (R. B. Frankel and R. P. Blakemore, eds.), pp. 151-166. Plenum, New York.

Lovley, D. R. 1991. DissimilatoryFe(III) and Mn(1V) reduction. Microbiol. Rev. 55,259-287.

Lovley, D. R. 1992. Microbial oxidation of organic matter coupled to the reduction of Fe(III) and

Mn(IV) oxides. Catena 21,101 - 1 14.

Lovley, D. R. 1993. Dissimilatory metal reduction. Annu. Rev. Microbiol. 47,263-290.

Lovley, D. R., and Goodwin, S. 1988. Hydrogen concentrations as an indicator of the predominant

terminal electron accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta 52,


Lovley, D. R., and Klug, M.J. 1986. Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments. Geochim. Cosmochim.Acfa 50, l l - 18.

Lovley, D. R., and Phillips, E. J. P. 1986a. Organic matter mineralization with reduction of ferric iron

in anaerobic sediments. Appl. Environ. Microbiol. 51,683-689.

Lovley, D. R., and Phillips, E. J. P. 1986b. Availability of ferric iron for microbial reduction in bottom

sediments of the freshwater tidal Potomac River. Appl. Environ. Microbiol. 52,751 -757.

Lovley, D. R., and Phillips, E. J. P. 1987a. Rapid assay for microbially reducible ferric iron in aquatic

sediments. Appl. Environ. Microbiol. 53, 1536- 1540.

Lovley, D. R., and Phillips, E. J. P. 1987b. Competitive mechanisms for inhibition of sulfate reduction

and methane production in the zone of ferric iron reduction in sediments. Appl. Environ. Microbiol. 53,2636-2641.

Lovley, D. R., and Phillips, E. J. P. ‘1988a. Novel mode of microbial energy metabolism: Organic

carbon oxidation coupled to dissimilatory reduction of iron or manganese.Appl. Environ. Microbid. 54, 1472- 1480.

Lovley, D. R., and Phillips, E. J. P. 1988b. Manganese inhibitionof microbial iron reduction in anaerobic sediments. Geomicrobiol. J. 6, 145-155.

Lovley, D. R., and Phillips, E. J. P. 1989. Requirement for a microbial consortium to completely oxidize glucose in Fe(II1)-reducing sediments. Appl. Environ. Microbiol. 55,3234-3236.

Lovley, D. R., and Phillips, E.J. P. 1992a.Reduction of uranium by Desulfovibrio desulfuricans. Appl.

Environ. Microbiol. 58,850-856.

Lovley, D. R., and Phillips, E. J. P. 1992b. Bioremediationof uranium contamination with enzymatic

uranium reduction. Environ. Sci. Technol. 26,2228-2234.

Lovley, D. R., and Phillips, E. J. P. 1994a. Reduction of chromate by Desulfovibrio vulgaris (Hildenborough) and its c, cytochrome. Appl. Environ. Microbiol. 60,726-728.

Lovley, D. R., and Phillips, E. J. P. 1994b. Novel processes for anaerobic sulfate production from

elemental sulfur by sulfate-reducingbacteria. Appl. Environ. Microbiol. 60,2394-2399.

Lovley, D. R., and Stolz, J. F. 1989. Soil Magnetite. Nature 340, 106.

Lovley. D. R., Stolz, J. F., Nord, G. L., and Phillips, E.J. P. 1987. Anaerobic production of magnetite

by a dissimilatory iron-reducingmicroorganism. Nature 330,252-254.

Lovley. D. R., Baedecker, M. J.. Lonergan, D. J., Cozzarelli, I. M., Phillips, E. J. P., and Siegel, D. I.

1989a. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339,


Lovley, D. R., Phillips, E.J. P., and Lonergan, D. J. 1989b. Hydrogen and formate oxidation coupled

to dissimilatory reduction of iron or manganese by Alteromonas purrefaciens. Appl. Environ.

Microbiol. 55,700-706.

Lovley, D. R., Chapelle. F. H., and Phillips, E. J. P. 1990. Fe(II1)-reducingbacteria in deeply buried

sedimentsof the Atlantic Coastal Plain. Geology 18,954-957.



Lovley, D. R., Phillips, E. J. P., Gorby, Y. A., and Landa, E. R. 1991a. Microbial reduction of uranium.

Nature 350,413-416.

Lovley, D. R., Phillips, E. J. P., and Lonergan, D. J. 1991b. Enzymatic versus nonenzymatic mechanisms for Fe(II1) reduction in aquatic sediments. Environ. Sci. Technol. 25, 1062- 1067.

Lovley, D. R., Giovannoni. S . J., White, D. C., Champine, J. E., Phillips, E. J. P., Gorby, Y.A., and

Goodwin, S . 1993a. Geobacter metullireducens gen. nov. sp. nov., a microorganism capable of

coupling the complete oxidation of organic compounds to the reduction of iron and other metals.

Arch. Microbiol. 159,336-344.

Lovley, D. R., Roden, E. E., Phillips, E. J. P., and Woodward, J. C. 3993b. Enzymatic iron and uranium

reduction by sulfate-reducing bacteria. Marine Geol. 113,41-53.


of uranium by

Lovley, D. R., Widman, P. K., Woodward, J. C., and Phillips, J. P. 1 9 9 3 ~Reduction

cytochrome c 3 of Desulfovibrio vulgaris. Appl. Environ. Microbiol. 59,3572-3576.

Lovley, D. R., Chapelle, F. H., and Woodward, J. C. 1994a. Use of dissolved H2concentrations to

determine the distribution of microbially catalyzed redox reactions in anoxic ground water. Environ. Sci. Technol. 28, 1205- 1210.

Lovley, D. R.,Woodward, J. C., and Chapelle, F. H. 1994b. Stimulated anoxic biodegradation of

aromatic hydrocarbons using Fe(LU) ligands. Nature 370, 128- 131.

Lundgren. D. G., Boucheron, J., and Mahony, W. 1983. Geomicrobiology of iron: MechanisrJl of ferric

iron reduction. In “Recent Progress in Biohydrometallurgy” (G. Rossi and A. E. Torma, ed.).

Associazion Mineraria Sarda, Iglesias, Italy.

Luoma, S. N.. Johns, C., Fisher, N. S., Steinberg, N. A., Oremland, R. S., and Reinfelder, J. R. 1992.

Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways. Environ. Sci. Technol. 26,485-491.

Lyngkilde, J., and Christensen, T. H. 1992a. Fate of organic contaminants in the redox zones of a

landfill leachate pollution plume (Vejen, Denmark). J. Conramin. Hydrol. 10,291 -307.

Lyngkilde, J., and Christensen, T. H. 1992b. Redox zones of a landfill leachate pollution plume (Vejen,

Denmark). J. Contamin. Hydrol. 10,273-289.

Macaskie, L. E. 1991. The application of biotechnology to the treatment of wastes produced from the

nuclear fuel cycle: Biodegradation and bioaccumulation as a means of treating radionuclidecontaining streams. Crit. Rev. Biorech. 11,4 I - 1 12.

Macy, J. M., and Lawson, S. 1993. Cell yield (Ym) of Thaueru selenatis grown anaerobically with

acetate plus selenate or nitrate. Arch. Microbiol. 160,295-298.

Macy, J. M., Michel, T. A., and Kirsch, D. G. 1989. selenate reduction by a Pseudomonas species: a

new mode of anaerobic respiration. FEMS Microbiol. Lett. 61, 195- 198.

Macy, J. M., Lawson, S . , and DeMoll-Decker, H. 1993a. Bioremediation of selenium oxyanions in

San Joaquin drainage water using Thauera selenutis in a biological reactor system. Appl. Microbiol. Biotechnol. 40,588-594.

Macy, J. M., Rech, S., Auling, G., Dorsch, M., Stackebrandt, E., and Sly, L. I. 1993b. Thauera selenatis gen. nov., sp. nov.. a member of the beta subclass of the Proteobuctena with a novel type

of anaerobic respiration. Inr. J. Sys. Bacreriol. 43, 135- 142.

Maher, B. A. 1986. Characterisation of soils by mineral magnetic measurements. Phys. Earrh Planet.

Inter. 42,76-92.

Maher, B. A,, and Taylor, R. M. 1988. Formation of ultrafine-grained magnetite in soils. Narure 336,


Maiers, D. T., Wichlacz, P. L., Thompson, D. L., and Bruhn, D. F. 1988. Selenate reduction by bacteria

from a selenium-rich environment. AppL Environ. Microbiol. 54,259 I -2593.

Mann, S., Frankel, R. B., and Blakemore, R. P. 1984. Structure, morphology and crystal growth of

bacterial magnetite. Narure 310,405-407.

Mann, S., Sparks, N. H. C., and Blakemore, R. P. 1987. Ultrastructure and characterization of anisotropic magnetic inclusions in magnetotactic bacteria. Proc. R. SOC.London 231,469-476.



Mann, S., Sparks, N. H., and Board, R. G. 1990a. Magnetotactic bacteria: Microbiology, biomineralization, palaeomagnetism and biotechnology. Adv. Microbiol. Physiol. 31, 125- 18 1.

Mann, S.,Sparks, N. H. C., Frankel, R. B., Bazylinski, D. A., and Jannasch, H. W. 1990b. Biomineralization of ferrimagnetic greigite (Fe,S,) and iron pyrite (FeS,) in a magnetotactic bacterium.

Nature 343,258-261.

Masscheleyn, P. H., Pardue, J. H., DeLaune, R. D., and Patrick Jr, W. H. 1992. Chromium redox

chemistry in a lower Mississippi Valley bottomland hardwood wetland. Environ. Sci. Technol.

26, 1217-1226.

Matsunaga, T., Sakaguchi, T.,and Tadokoro, F. 1991. Magnetite formation by a magnetic bacterium

capable of growing aerobically. Appl. Microbiol. Biotechnol. 35,65 1-655.

Maynard, J. B. 1983. “Geochemistry of Sedimentary Ore Deposits.” Springer-Verlag, New York.

McBride, E. F. 1974. Significance of color in red, green, purple, olive, brown, and gray beds of difunta

group, Northeastern Mexico. J. Sed. Petrol. 44,760-773.

McCabe, C., Sassen, R., and Saffer, B. 1987. Occurrence of secondary magnetite within biodegraded

soil. Geology 15,7- 10.

Miura, Y., Watanabe, A,, Murase, I., and Kimura, M. 1992. Methane production and its fate in paddy

fields. 11. Oxidation of methane and its coupled ferric oxide reduction in subsoil. Soil Sci. Plant


Moench, T.T. 1988. Bilophococcus magnetotacticus gen. nov. sp. nov., a motile, magnetic coccus.

Antonie van Leeuwenhoek 54,483-496.

Mohagheghi, A,, Updegraff, D. M., and Goldhaber, M. B. 1985. The role of sulfate-reducing bacteria

in the deposition of sedimentary uranium ores. Geomicrobiol. J . 4, 153- 173.

Moskowitz, B. M., Frankel, R. B., Bazylinski, D. A,, Jannasch, H. W., and Lovley, D. R. 1989. A

comparison of magnetite particles produced anaerobically by magnetotactic and dissimilatory

iron-reducing bacteria. Geophys. Res. Lett. 16,665-668.

Moule, A. L., and Wilkinson, S. G. 1987. Polar lipids, fatty acids, and isoprenoid quinones of Alteromonas putrefaciens (Shewanella putrefaciens). System. Appl. Microbiol. 9, 192- 198.

Mullins, C. E. 1977. Magnetic susceptibility of the soil and its significance in soil science: A review.

J. Soil Sci. 28,223-246.

Munch, J. C., and Ottow, J. C. G. 1983. Reductive transformation mechanism of ferric oxides in hydromorphic soils. Environ. Biogeochem. Ecol. Bull. (Stockholm)35,383-394.

Myers, C. R., and Myers, J. M. 1992. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR- 1. J. Bacteriol. 174, 3429-3438.

Myers, C. R., and Myers, J. M. 1993a. Ferric reductase is associated with the membranes of anaerobically grown Shewanella putrefaciens MR- I . FEMS Microbiol. Lett. 108, 15-22.

Myers, C. R., and Myers, J. M. 1993b. Role of menaquinone in the reduction of fumurate, iron(II1)

and manganese(1V) by Shewanella putrefaciens MR-I. FEMS Microbiol. Lett. 114,


Myers, C. R., and Nealson, K. H. 1988a. Bacterial manganese reduction and growth with manganese

oxide as the sole electron acceptor. Science 240, 1319- 1321.

Myers, C. R., and Nealson, K.H. 1988b. Microbial reduction of manganese oxides: Interactions with

iron and sulfur. Geochim. Cosmochim. Acta 52,2727-2732.

Myers, C. R., and Nealson, K. H. 1990. Respiration-linked proton translocation coupled to anaerobic

reduction of manganese(1V) and iron(II1) in Shewanella putrefaciens MR- 1. J. Bacteriol. 172,


Naik, R. R., Murillo, F. M., and Stolz, J. F. 1993. Evidence for a novel nitrate reductase in the dissimilatory iron-reducing bacterium Geobacter metullireducens. FEMS Microbiol. Lett. 106,


Nealson, K. H., Myers, C. R., and Wimpee, B. B. 1991. Isolation and identification of manganesereducing bacteria and estimates of microbial Mn(1V)-reducing potential in the Black Sea. Deep

Sea Res. 38. S907-S920.

Xem Thêm
Tải bản đầy đủ (.pdf) (371 trang)