Tải bản đầy đủ - 0 (trang)
TÀI LIỆU THAM KHẢO

TÀI LIỆU THAM KHẢO

Tải bản đầy đủ - 0trang

Đồ án tốt nghiệp

14.

Liu, C.; Shi, J.-w.; Gao, C.; Niu, C., Manganese oxide-based catalysts for lowtemperature selective catalytic reduction of NOx with NH3 : A review. Applied

Catalysis A: Generalpplied Catalysis A, General 2016, 522, 54-69.

15.

Brandenberger, S.; Kröcher, O.; Tissler, A.; Althoff, R., The State of the Art in

Selective Catalytic Reduction of NOx by Ammonia Using Metal-Exchanged Zeolite

Catalysts. Catalysis Reviews 2008, 50, 37-41.

16.

Liu, G.; Tian, P.; Li, J.; Zhang, D.; Zhou, F.; Liu, Z., Synthesis,

characterization and catalytic properties of SAPO-34 synthesized using diethylamine

as a template. Microporous and Mesoporous Materials 2008, 111 (1), 143-149.

17.

Zeolite Molecular Sieves: Structure, Chemistry, and Use D. W. Breck (Union

Carbide Corporation, Tarrytown, New York) John Wiley and Sons, New York, London,

Sydney, and Toronto. 1974. 771 pp. $11.95. Journal of Chromatographic Science

1975, 13 (4), 180-189.

18.

Wilson, S.; Barger, P., The characteristics of SAPO-34 which influence the

conversion of methanol to light olefins. Microporous and Mesoporous Materials 1999,

29, 117-126.

19.

M, H.; L, K., Transition-metal ions in aluminophosphate and

silicoaluminophosphate molecular sieves: location, interaction with adsorbates and

catalytic properties. Chemical Reviews 1999, 99 (3), 635-664.

20.

Sastre, G.; Lewis, D. W.; Richard, C.; Catlow, A., Modeling of Silicon

Substitution in SAPO-5 and SAPO-34 Molecular Sieves. Journal of Physical

Chemistry B 1997, 101 (27), 5250-5262.

21.

Yan, Z.; Chen, B.; Huang, Y., A solid-state NMR study of the formation of

molecular sieve SAPO-34. Solid State Nucl Magn Reson 2009, 35 (2), 49-60.

22.

Rajic, N., Open-Framework Aluminophosphates: Synthesis, Characterization

and Transition Metal Modifications. 2005, 70.

23.

Kulprathipanja, S., Zeolites in Industrial Separation and Catalysis. WILEYVCH Verlag GmbH & Co KGaA: Weinheim, 2010.

24.

Masoumi, S.; Towfighi, J.; Mohamadalizadeh, A.; Kooshki, Z.; Rahimi, K.,

Tri-templates synthesis of SAPO-34 and its performance in MTO reaction by

statistical design of experiments. Applied Catalysis A: General 2015, 493, 103-111.

25.

Askari, S.; Halladj, R.; Sohrabi, M., An overview of the effects of

crystallization time, template and silicon sources on hydrothermal synthesis of sapo34 molecular sieve with small crystals. Iranian Journal of Science and Technology

2012, 32, 83-93.

26.

Popova, M.; Minchev, C.; Kanazirev, V., Methanol conversion to light alkenes

over SAPO-34 molecular sieves synthesized using various sources of silicon and

aluminium. Applied Catalysis A: General 1998, 169 (2), 227-235.



52



Đồ án tốt nghiệp

27.

Salmasi, M.; Fatemi, S.; Hashemi, S. J., MTO reaction over SAPO-34 catalysts

synthesized by combination of TEAOH and morpholine templates and different silica

sources. Scientia Iranica 2012, 19 (6), 1632-1637.

28.

Yu, L.; Zhong, Q.; Zhang, S., Research of copper contained SAPO-34 zeolite

for NH3-SCR DeNOx by solvent-free synthesis with Cu-TEPA. Microporous and

Mesoporous Materials 2016, 234, 303-309.

29.

Sun, Q.; Xie, Z.; Yu, J., The state-of-the-art synthetic strategies for SAPO-34

zeolite catalysts in methanol-to-olefin conversion. National Science Review 2017, 5

(4), 542-558.

30.

Lee, Y.-j.; Baek, S.-c.; Jun, K.-w., Methanol conversion on SAPO-34 catalysts

prepared by mixed template method. Applied Catalysis A: General 2007, 329, 130136.

31.

Xu, L.; Liu, Z.; Du, A.; Wei, Y.; Sun, Z., Synthesis, characterization, and

MTO performance of MeAPSO-34 molecular sieves. In Studies in Surface Science

and Catalysis,. Elsevier, 2004, 147, 445-450.

32.

Manuel, H.; Hartmut, L.; Ruben-Sebastian, H., SCR Technology for NOx

Reduction: Series Experience and State of Development. In DEER Conference, 2005.

33.

Long, R. Q.; Yang, R. T., Fe-ZSM-5 for selective catalytic reduction of NO with

NH3 : a comparative study of different preparation techniques. Catalysis Letters 2001,

74, 1-5.

34.

Wang, L.; Li, W.; Qi, G.; Weng, D., Location and nature of Cu species in

Cu/SAPO-34 for selective catalytic reduction of NO with NH3. Journal of Catalysis

2012, 289, 21-29.

35.

Cañizares, P.; de Lucas, A.; Dorado, F.; Durán, A.; Asencio, I.,

Characterization of Ni and Pd supported on H-mordenite catalysts: Influence of the

metal loading method. 1998, 169, 137-150.

36.

Ferch, H., Zeolites and clay minerals as sorbents and molecular sieves.

Academic Press 1980.

37.

Sainz, G.-H., Insights into the Chemistry of Organic Structure-Directing Agents

in the Synthesis of Zeolitic Materials. Springer: 2018.

38.

M, M.; C, M. n.; A, C., Multipore zeolites: synthesis and catalytic applications.

. Angew Chem Int Ed 2015, 54, 3560–3579.

39.

DL, D.; GJ, K.; KG, S., P-derived organic cations as structuredirecting agents:

synthesis of a high-silica zeolite (ITQ-27) with a two-dimensional 12-ring channel

system. J Am Chem Soc 2006, 128, 8862–8867.

40.

EM, F.; RL, P. Silica polymorph and process for preparing same. 1978.

41.

P, C.; JL, P.; A, S.-M., The fluoride route: a strategy to crystalline porous

material. Comptes Rendus Chimie 2005, 8 (2), 245–266.



53



Đồ án tốt nghiệp

42.

SI, Z.; RJ, D.; R, M., Studies on the role of fluoride ion vs reaction

concentration in zeolite synthesis Journal of Physical Chemistry B 2005, 109 (55),

652–661.

43.

J, L.; A, C.; J, Y., Synthesis of new zeolite structures. Chem Soc Rev 2015, 44

(23), 7112–7127.

44.

Z, W.; J, Y.; R, X., Needs and trends in rational synthesis of zeolitic materials.

Chem Soc Rev 2012, 41 (2), 1729–1741.

45.

Prakash, A. M.; Unnikrishnan, S., Synthesis of SAPO-34: high silicon

incorporation in the presence of morpholine as template. Journal of the Chemical

Society, Faraday Transactions 1994, 90 (15), 2291-2296.

46.

Emrani, P.; Fatemi, S.; Ashraf Talesh, S. S., Effect of Synthesis Parameters on

Phase Purity, Crystallinity and Particle Size of SAPO-34. 2011, 30, 113-121.

47.

Zhang, Y.; Ren, Z.; Wang, Y.; Deng, Y.; Li, J., Synthesis of Small-Sized

SAPO-34 Crystals with Varying Template Combinations for the Conversion of

Methanol to Olefins. 2018, 8, 570.

48.

M S, P., X-ray Diffraction Analysis: Principle, Instrument and Applications.

2014.

49.

Ma, Z.; Zaera, F., Characterization of Heterogeneous Catalysts. 2006; pp 1-37.

50.

Hajfarajollah, H., Effect of template source on hydrothermally synthesis of

SAPO-34 molecular sieves with small crystals. 2011.

51.

Alyamani, A.; Lemine, O. M., FE-SEM Characterization of Some

Nanomaterial. IntechOpen: 2011.

52.

Marshall, J. L., Scanning Electron Microscopy and Energy Dispersive X-ray

(SEM/EDX) Characterization of Solder Solderability and Reliability. In Solder Joint

Reliability: Theory and Applications, Lau, J. H., Ed. Springer US: Boston, MA, 1991;

173-224.

53.

Thommes, M.; Kaneko, K.; Neimark Alexander, V.; Olivier James, P.;

Rodriguez-Reinoso, F.; Rouquerol, J.; Sing Kenneth, S. W., Physisorption of gases,

with special reference to the evaluation of surface area and pore size distribution

(IUPAC Technical Report). In Pure and Applied Chemistry, 2015, 87, 1051.

54.

Jhung, S. H.; Chang, J.-S.; Hwang, J. S.; Park, S.-E., Selective formation of

SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal

heating. Microporous and Mesoporous Materials 2003, 64 (1), 33-39.

55.

Baerlocher, C.; McCusker, L. B.; Olson, D. H., Atlas of Zeolite Framework

types. Commission of the international Zeolite Association 2007.

56.

Martin, Y. C., Exploring QSAR:  Hydrophobic, Electronic, and Steric Constants

Journal of Medicinal Chemistry 1996, 39 (5), 1189-1190.

57.

Rao, P. R. H. P.; Matsukata, M., Dry-gel conversion technique for synthesis of

zeolite BEA. Chemical Communications 1996, 12), 1441-1442.



54



Đồ án tốt nghiệp

58.

Li, Z.; Martínez-Triguero, J.; Concepción, P.; Yu, J.; Corma, A., Methanol to

olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of

selectivity by silicon distribution. Physical Chemistry Chemical Physics 2013, 15 (35),

14670-14680.

59.

Aghaei, E.; Haghighi, M., High temperature synthesis of nanostructured CeSAPO-34 catalyst used in conversion of methanol to light olefins: effect of temperature

on physicochemical properties and catalytic performance. 2014, 22, 187-200.

60.

Kern, P.; Klimczak, M.; Heinzelmann, T.; Lucas, M.; Claus, P., Highthroughput study of the effects of inorganic additives and poisons on NH3-SCR

catalysts . Part II : Fe – zeolite catalysts. Applied Catalysis B : Environmental 2010,

95, 48-56.

61.

Yu, C.; Chen, F.; Dong, L.; Liu, X.; Huang, B.-C.; Wang, X.; Zhong, S.,

Manganese-rich MnSAPO-34 molecular sieves as an efficient catalyst for the selective

catalytic reduction of NO x with NH3: one-pot synthesis, catalytic performance, and

characterization. 2017, 24.

62.

Xiang, X.; Wu, P.; Cao, Y., Investigation of low‐temperature hydrothermal

stability of Cu‐SAPO‐34 for selective catalytic reduction of NOx with NH 3. Chinese

Journal of Catalysis 2017, 38, 918-927.

1.

Yale University; 2018 Environmental Global metrics for the environment :

Ranking country, 2018.

2.

Sakamoto, Y.; Shoji, K.; Trung, M.; Huong, T.; Anh, T., Air quality study in

Hanoi , Vietnam in 2015 – 2016 based on a one-year observation of NOx , O3 , CO

and a one-week observation of VOCs. 2017.

3.

Rutkowska, M.; Pacia, I.; Basąg, S.; Kowalczyk, A.; Piwowarska, Z.; Duda,

M.; Tarach, K. A.; Michalik, M.; Díaz, U.; Chmielarz, L., Catalytic performance of

commercial Cu-ZSM-5 zeolite modified by desilication in NH3-SCR and NH3-SCO

processes. Microporous and Mesoporous Materials 2017, 246.

4.

Kong, Y.; Kozakiewicz, T.; Johnson, R.; Huffmeyer, C.; Huckaby, J.; Abel,

J.; Baurley, J.; Duffield, K., Active DPF Regeneration for 2007 Diesel Engines. 2007.

5.

Niu, C.; Shi, X.; Liu, F.; Liu, K.; Xie, L.; You, Y.; He, H., High hydrothermal

stability of Cu-SAPO-34 catalysts for the NH3-SCR of NOx. Chemical Engineering

Journal 2016, 294, 254-263.

6.

Vuong, T. H.; Doan, A. T.; Pham, T. H.; Bruckner, A., Development of lowtemperature catalysts for the selective catalytic reduction of NOx with NH3: Review.

Vietnam Journal of Catalysis and Adsorption 2018, 7, 2-11.

7.

Doan, A. T.; Khang, N. N.; Phong, D. L. Q.; Vuong, T. H.; Pham, T. H.,

Influence of organic structure directing agents on the formation of SAPOs structure.

Vietnam Journal of Catalysis and Adsorption 2018, 7 (3), 87 - 91.

8.

Jaworski, P.; Kapusta, Ł. J., SCR System for NOx reduction in heavy duty

vehicles. Journal of KONES Powertrain and Transport 2015, 22.



55



Đồ án tốt nghiệp

9.

Guan, B.; Zhan, R.; Lin, H.; Huang, Z., Review of state of the art technologies

of selective catalytic reduction of NOx from diesel engine exhaust. Applied Thermal

Engineering 2014, 66, 395-414.

10.

Iwamoto, M.; Yahiro, H.; Tanda, K.; Mizuno, N.; Mine, Y.; Kagawat, S.,

Removal of Nltrogen Monoxide through a Novel Catalytlc Process. 1. Decomposltlon

on Excessively Copper Ion Exchanged ZSM-5 Zeolites. Journal of Physical

Chemistry 1991, 95, 3727-3730.

11.

Qi, C.; Bao, W.; Li, H.; Wu, W., Study of the V2O5-WO3/TiO2 Catalyst

Synthesized from Waste Catalyst on Selective Catalytic Reduction of NO. Journal of

Catalysis2017, 7.

12.

International Agency for Research on Cancer, W., IARC Monographs on the

Evaluation of Carcinogenic Risks to Humans Vol.86: Cobalt in Hard Metals and

Cobalt Sulfate, Gallium Arsenide, Indium Phosphide and Vanadium Pentoxide. 2006.

13.

Li, J.; Chang, H.; Ma, L.; Hao, J.; Yang, R. T., Low-temperature selective

catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts — A

review. Catalysis Today 2011, 175, 147-156.

14.

Liu, C.; Shi, J.-w.; Gao, C.; Niu, C., Manganese oxide-based catalysts for lowtemperature selective catalytic reduction of NOx with NH3 : A review. Applied

Catalysis A: Generalpplied Catalysis A, General 2016, 522, 54-69.

15.

Brandenberger, S.; Kröcher, O.; Tissler, A.; Althoff, R., The State of the Art in

Selective Catalytic Reduction of NOx by Ammonia Using Metal-Exchanged Zeolite

Catalysts. Catalysis Reviews 2008, 50, 37-41.

16.

Liu, G.; Tian, P.; Li, J.; Zhang, D.; Zhou, F.; Liu, Z., Synthesis,

characterization and catalytic properties of SAPO-34 synthesized using diethylamine

as a template. Microporous and Mesoporous Materials 2008, 111 (1), 143-149.

17.

Zeolite Molecular Sieves: Structure, Chemistry, and Use D. W. Breck (Union

Carbide Corporation, Tarrytown, New York) John Wiley and Sons, New York, London,

Sydney, and Toronto. 1974. 771 pp. $11.95. Journal of Chromatographic Science

1975, 13 (4), 180-189.

18.

Wilson, S.; Barger, P., The characteristics of SAPO-34 which influence the

conversion of methanol to light olefins. Microporous and Mesoporous Materials 1999,

29, 117-126.

19.

M, H.; L, K., Transition-metal ions in aluminophosphate and

silicoaluminophosphate molecular sieves: location, interaction with adsorbates and

catalytic properties. Chemical Reviews 1999, 99 (3), 635-664.

20.

Sastre, G.; Lewis, D. W.; Richard, C.; Catlow, A., Modeling of Silicon

Substitution in SAPO-5 and SAPO-34 Molecular Sieves. Journal of Physical

Chemistry B 1997, 101 (27), 5250-5262.

21.

Yan, Z.; Chen, B.; Huang, Y., A solid-state NMR study of the formation of

molecular sieve SAPO-34. Solid State Nucl Magn Reson 2009, 35 (2), 49-60.



56



Đồ án tốt nghiệp

22.

Rajic, N., Open-Framework Aluminophosphates: Synthesis, Characterization

and Transition Metal Modifications. 2005, 70.

23.

Kulprathipanja, S., Zeolites in Industrial Separation and Catalysis. WILEYVCH Verlag GmbH & Co KGaA: Weinheim, 2010.

24.

Masoumi, S.; Towfighi, J.; Mohamadalizadeh, A.; Kooshki, Z.; Rahimi, K.,

Tri-templates synthesis of SAPO-34 and its performance in MTO reaction by

statistical design of experiments. Applied Catalysis A: General 2015, 493, 103-111.

25.

Askari, S.; Halladj, R.; Sohrabi, M., An overview of the effects of

crystallization time, template and silicon sources on hydrothermal synthesis of sapo34 molecular sieve with small crystals. Iranian Journal of Science and Technology

2012, 32, 83-93.

26.

Popova, M.; Minchev, C.; Kanazirev, V., Methanol conversion to light alkenes

over SAPO-34 molecular sieves synthesized using various sources of silicon and

aluminium. Applied Catalysis A: General 1998, 169 (2), 227-235.

27.

Salmasi, M.; Fatemi, S.; Hashemi, S. J., MTO reaction over SAPO-34 catalysts

synthesized by combination of TEAOH and morpholine templates and different silica

sources. Scientia Iranica 2012, 19 (6), 1632-1637.

28.

Yu, L.; Zhong, Q.; Zhang, S., Research of copper contained SAPO-34 zeolite

for NH3-SCR DeNOx by solvent-free synthesis with Cu-TEPA. Microporous and

Mesoporous Materials 2016, 234, 303-309.

29.

Sun, Q.; Xie, Z.; Yu, J., The state-of-the-art synthetic strategies for SAPO-34

zeolite catalysts in methanol-to-olefin conversion. National Science Review 2017, 5

(4), 542-558.

30.

Lee, Y.-j.; Baek, S.-c.; Jun, K.-w., Methanol conversion on SAPO-34 catalysts

prepared by mixed template method. Applied Catalysis A: General 2007, 329, 130136.

31.

Xu, L.; Liu, Z.; Du, A.; Wei, Y.; Sun, Z., Synthesis, characterization, and

MTO performance of MeAPSO-34 molecular sieves. In Studies in Surface Science

and Catalysis,. Elsevier, 2004, 147, 445-450.

32.

Manuel, H.; Hartmut, L.; Ruben-Sebastian, H., SCR Technology for NOx

Reduction: Series Experience and State of Development. In DEER Conference, 2005.

33.

Long, R. Q.; Yang, R. T., Fe-ZSM-5 for selective catalytic reduction of NO with

NH3 : a comparative study of different preparation techniques. Catalysis Letters 2001,

74, 1-5.

34.

Wang, L.; Li, W.; Qi, G.; Weng, D., Location and nature of Cu species in

Cu/SAPO-34 for selective catalytic reduction of NO with NH3. Journal of Catalysis

2012, 289, 21-29.

35.

Cañizares, P.; de Lucas, A.; Dorado, F.; Durán, A.; Asencio, I.,

Characterization of Ni and Pd supported on H-mordenite catalysts: Influence of the

metal loading method. 1998, 169, 137-150.



57



Đồ án tốt nghiệp

36.

Ferch, H., Zeolites and clay minerals as sorbents and molecular sieves.

Academic Press 1980.

37.

Sainz, G.-H., Insights into the Chemistry of Organic Structure-Directing Agents

in the Synthesis of Zeolitic Materials. Springer: 2018.

38.

M, M.; C, M. n.; A, C., Multipore zeolites: synthesis and catalytic applications.

. Angew Chem Int Ed 2015, 54, 3560–3579.

39.

DL, D.; GJ, K.; KG, S., P-derived organic cations as structuredirecting agents:

synthesis of a high-silica zeolite (ITQ-27) with a two-dimensional 12-ring channel

system. J Am Chem Soc 2006, 128, 8862–8867.

40.

EM, F.; RL, P. Silica polymorph and process for preparing same. 1978.

41.

P, C.; JL, P.; A, S.-M., The fluoride route: a strategy to crystalline porous

material. Comptes Rendus Chimie 2005, 8 (2), 245–266.

42.

SI, Z.; RJ, D.; R, M., Studies on the role of fluoride ion vs reaction

concentration in zeolite synthesis Journal of Physical Chemistry B 2005, 109 (55),

652–661.

43.

J, L.; A, C.; J, Y., Synthesis of new zeolite structures. Chem Soc Rev 2015, 44

(23), 7112–7127.

44.

Z, W.; J, Y.; R, X., Needs and trends in rational synthesis of zeolitic materials.

Chem Soc Rev 2012, 41 (2), 1729–1741.

45.

Prakash, A. M.; Unnikrishnan, S., Synthesis of SAPO-34: high silicon

incorporation in the presence of morpholine as template. Journal of the Chemical

Society, Faraday Transactions 1994, 90 (15), 2291-2296.

46.

Emrani, P.; Fatemi, S.; Ashraf Talesh, S. S., Effect of Synthesis Parameters on

Phase Purity, Crystallinity and Particle Size of SAPO-34. 2011, 30, 113-121.

47.

Zhang, Y.; Ren, Z.; Wang, Y.; Deng, Y.; Li, J., Synthesis of Small-Sized

SAPO-34 Crystals with Varying Template Combinations for the Conversion of

Methanol to Olefins. 2018, 8, 570.

48.

M S, P., X-ray Diffraction Analysis: Principle, Instrument and Applications.

2014.

49.

Ma, Z.; Zaera, F., Characterization of Heterogeneous Catalysts. 2006; pp 1-37.

50.

Hajfarajollah, H., Effect of template source on hydrothermally synthesis of

SAPO-34 molecular sieves with small crystals. 2011.

51.

Alyamani, A.; Lemine, O. M., FE-SEM Characterization of Some

Nanomaterial. IntechOpen: 2011.

52.

Marshall, J. L., Scanning Electron Microscopy and Energy Dispersive X-ray

(SEM/EDX) Characterization of Solder Solderability and Reliability. In Solder Joint

Reliability: Theory and Applications, Lau, J. H., Ed. Springer US: Boston, MA, 1991;

173-224.

53.

Thommes, M.; Kaneko, K.; Neimark Alexander, V.; Olivier James, P.;

Rodriguez-Reinoso, F.; Rouquerol, J.; Sing Kenneth, S. W., Physisorption of gases,



58



Đồ án tốt nghiệp

with special reference to the evaluation of surface area and pore size distribution

(IUPAC Technical Report). In Pure and Applied Chemistry, 2015, 87, 1051.

54.

Jhung, S. H.; Chang, J.-S.; Hwang, J. S.; Park, S.-E., Selective formation of

SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal

heating. Microporous and Mesoporous Materials 2003, 64 (1), 33-39.

55.

Baerlocher, C.; McCusker, L. B.; Olson, D. H., Atlas of Zeolite Framework

types. Commission of the international Zeolite Association 2007.

56.

Martin, Y. C., Exploring QSAR:  Hydrophobic, Electronic, and Steric Constants

Journal of Medicinal Chemistry 1996, 39 (5), 1189-1190.

57.

Rao, P. R. H. P.; Matsukata, M., Dry-gel conversion technique for synthesis of

zeolite BEA. Chemical Communications 1996, 12), 1441-1442.

58.

Li, Z.; Martínez-Triguero, J.; Concepción, P.; Yu, J.; Corma, A., Methanol to

olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of

selectivity by silicon distribution. Physical Chemistry Chemical Physics 2013, 15 (35),

14670-14680.

59.

Aghaei, E.; Haghighi, M., High temperature synthesis of nanostructured CeSAPO-34 catalyst used in conversion of methanol to light olefins: effect of temperature

on physicochemical properties and catalytic performance. 2014, 22, 187-200.

60.

Kern, P.; Klimczak, M.; Heinzelmann, T.; Lucas, M.; Claus, P., Highthroughput study of the effects of inorganic additives and poisons on NH3-SCR

catalysts . Part II : Fe – zeolite catalysts. Applied Catalysis B : Environmental 2010,

95, 48-56.

61.

Yu, C.; Chen, F.; Dong, L.; Liu, X.; Huang, B.-C.; Wang, X.; Zhong, S.,

Manganese-rich MnSAPO-34 molecular sieves as an efficient catalyst for the selective

catalytic reduction of NO x with NH3: one-pot synthesis, catalytic performance, and

characterization. 2017, 24.

62.

Xiang, X.; Wu, P.; Cao, Y., Investigation of low‐temperature hydrothermal

stability of Cu‐SAPO‐34 for selective catalytic reduction of NOx with NH 3. Chinese

Journal of Catalysis 2017, 38, 918-927.

1.

Yale University; 2018 Environmental Global metrics for the environment :

Ranking country, 2018.

2.

Sakamoto, Y.; Shoji, K.; Trung, M.; Huong, T.; Anh, T., Air quality study in

Hanoi , Vietnam in 2015 – 2016 based on a one-year observation of NOx , O3 , CO

and a one-week observation of VOCs. 2017.

3.

Rutkowska, M.; Pacia, I.; Basąg, S.; Kowalczyk, A.; Piwowarska, Z.; Duda,

M.; Tarach, K. A.; Michalik, M.; Díaz, U.; Chmielarz, L., Catalytic performance of

commercial Cu-ZSM-5 zeolite modified by desilication in NH3-SCR and NH3-SCO

processes. Microporous and Mesoporous Materials 2017, 246.

4.

Kong, Y.; Kozakiewicz, T.; Johnson, R.; Huffmeyer, C.; Huckaby, J.; Abel,

J.; Baurley, J.; Duffield, K., Active DPF Regeneration for 2007 Diesel Engines. 2007.



59



Đồ án tốt nghiệp

5.

Niu, C.; Shi, X.; Liu, F.; Liu, K.; Xie, L.; You, Y.; He, H., High hydrothermal

stability of Cu-SAPO-34 catalysts for the NH3-SCR of NOx. Chemical Engineering

Journal 2016, 294, 254-263.

6.

Vuong, T. H.; Doan, A. T.; Pham, T. H.; Bruckner, A., Development of lowtemperature catalysts for the selective catalytic reduction of NOx with NH3: Review.

Vietnam Journal of Catalysis and Adsorption 2018, 7, 2-11.

7.

Doan, A. T.; Khang, N. N.; Phong, D. L. Q.; Vuong, T. H.; Pham, T. H.,

Influence of organic structure directing agents on the formation of SAPOs structure.

Vietnam Journal of Catalysis and Adsorption 2018, 7 (3), 87 - 91.

8.

Jaworski, P.; Kapusta, Ł. J., SCR System for NOx reduction in heavy duty

vehicles. Journal of KONES Powertrain and Transport 2015, 22.

9.

Guan, B.; Zhan, R.; Lin, H.; Huang, Z., Review of state of the art technologies

of selective catalytic reduction of NOx from diesel engine exhaust. Applied Thermal

Engineering 2014, 66, 395-414.

10.

Iwamoto, M.; Yahiro, H.; Tanda, K.; Mizuno, N.; Mine, Y.; Kagawat, S.,

Removal of Nltrogen Monoxide through a Novel Catalytlc Process. 1. Decomposltlon

on Excessively Copper Ion Exchanged ZSM-5 Zeolites. Journal of Physical

Chemistry 1991, 95, 3727-3730.

11.

Qi, C.; Bao, W.; Li, H.; Wu, W., Study of the V2O5-WO3/TiO2 Catalyst

Synthesized from Waste Catalyst on Selective Catalytic Reduction of NO. Journal of

Catalysis2017, 7.

12.

International Agency for Research on Cancer, W., IARC Monographs on the

Evaluation of Carcinogenic Risks to Humans Vol.86: Cobalt in Hard Metals and

Cobalt Sulfate, Gallium Arsenide, Indium Phosphide and Vanadium Pentoxide. 2006.

13.

Li, J.; Chang, H.; Ma, L.; Hao, J.; Yang, R. T., Low-temperature selective

catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts — A

review. Catalysis Today 2011, 175, 147-156.

14.

Liu, C.; Shi, J.-w.; Gao, C.; Niu, C., Manganese oxide-based catalysts for lowtemperature selective catalytic reduction of NOx with NH3 : A review. Applied

Catalysis A: Generalpplied Catalysis A, General 2016, 522, 54-69.

15.

Brandenberger, S.; Kröcher, O.; Tissler, A.; Althoff, R., The State of the Art in

Selective Catalytic Reduction of NOx by Ammonia Using Metal-Exchanged Zeolite

Catalysts. Catalysis Reviews 2008, 50, 37-41.

16.

Liu, G.; Tian, P.; Li, J.; Zhang, D.; Zhou, F.; Liu, Z., Synthesis,

characterization and catalytic properties of SAPO-34 synthesized using diethylamine

as a template. Microporous and Mesoporous Materials 2008, 111 (1), 143-149.

17.

Zeolite Molecular Sieves: Structure, Chemistry, and Use D. W. Breck (Union

Carbide Corporation, Tarrytown, New York) John Wiley and Sons, New York, London,

Sydney, and Toronto. 1974. 771 pp. $11.95. Journal of Chromatographic Science

1975, 13 (4), 180-189.



60



Đồ án tốt nghiệp

18.

Wilson, S.; Barger, P., The characteristics of SAPO-34 which influence the

conversion of methanol to light olefins. Microporous and Mesoporous Materials 1999,

29, 117-126.

19.

M, H.; L, K., Transition-metal ions in aluminophosphate and

silicoaluminophosphate molecular sieves: location, interaction with adsorbates and

catalytic properties. Chemical Reviews 1999, 99 (3), 635-664.

20.

Sastre, G.; Lewis, D. W.; Richard, C.; Catlow, A., Modeling of Silicon

Substitution in SAPO-5 and SAPO-34 Molecular Sieves. Journal of Physical

Chemistry B 1997, 101 (27), 5250-5262.

21.

Yan, Z.; Chen, B.; Huang, Y., A solid-state NMR study of the formation of

molecular sieve SAPO-34. Solid State Nucl Magn Reson 2009, 35 (2), 49-60.

22.

Rajic, N., Open-Framework Aluminophosphates: Synthesis, Characterization

and Transition Metal Modifications. 2005, 70.

23.

Kulprathipanja, S., Zeolites in Industrial Separation and Catalysis. WILEYVCH Verlag GmbH & Co KGaA: Weinheim, 2010.

24.

Masoumi, S.; Towfighi, J.; Mohamadalizadeh, A.; Kooshki, Z.; Rahimi, K.,

Tri-templates synthesis of SAPO-34 and its performance in MTO reaction by

statistical design of experiments. Applied Catalysis A: General 2015, 493, 103-111.

25.

Askari, S.; Halladj, R.; Sohrabi, M., An overview of the effects of

crystallization time, template and silicon sources on hydrothermal synthesis of sapo34 molecular sieve with small crystals. Iranian Journal of Science and Technology

2012, 32, 83-93.

26.

Popova, M.; Minchev, C.; Kanazirev, V., Methanol conversion to light alkenes

over SAPO-34 molecular sieves synthesized using various sources of silicon and

aluminium. Applied Catalysis A: General 1998, 169 (2), 227-235.

27.

Salmasi, M.; Fatemi, S.; Hashemi, S. J., MTO reaction over SAPO-34 catalysts

synthesized by combination of TEAOH and morpholine templates and different silica

sources. Scientia Iranica 2012, 19 (6), 1632-1637.

28.

Yu, L.; Zhong, Q.; Zhang, S., Research of copper contained SAPO-34 zeolite

for NH3-SCR DeNOx by solvent-free synthesis with Cu-TEPA. Microporous and

Mesoporous Materials 2016, 234, 303-309.

29.

Sun, Q.; Xie, Z.; Yu, J., The state-of-the-art synthetic strategies for SAPO-34

zeolite catalysts in methanol-to-olefin conversion. National Science Review 2017, 5

(4), 542-558.

30.

Lee, Y.-j.; Baek, S.-c.; Jun, K.-w., Methanol conversion on SAPO-34 catalysts

prepared by mixed template method. Applied Catalysis A: General 2007, 329, 130136.

31.

Xu, L.; Liu, Z.; Du, A.; Wei, Y.; Sun, Z., Synthesis, characterization, and

MTO performance of MeAPSO-34 molecular sieves. In Studies in Surface Science

and Catalysis,. Elsevier, 2004, 147, 445-450.



61



Đồ án tốt nghiệp

32.

Manuel, H.; Hartmut, L.; Ruben-Sebastian, H., SCR Technology for NOx

Reduction: Series Experience and State of Development. In DEER Conference, 2005.

33.

Long, R. Q.; Yang, R. T., Fe-ZSM-5 for selective catalytic reduction of NO with

NH3 : a comparative study of different preparation techniques. Catalysis Letters 2001,

74, 1-5.

34.

Wang, L.; Li, W.; Qi, G.; Weng, D., Location and nature of Cu species in

Cu/SAPO-34 for selective catalytic reduction of NO with NH3. Journal of Catalysis

2012, 289, 21-29.

35.

Cañizares, P.; de Lucas, A.; Dorado, F.; Durán, A.; Asencio, I.,

Characterization of Ni and Pd supported on H-mordenite catalysts: Influence of the

metal loading method. 1998, 169, 137-150.

36.

Ferch, H., Zeolites and clay minerals as sorbents and molecular sieves.

Academic Press 1980.

37.

Sainz, G.-H., Insights into the Chemistry of Organic Structure-Directing Agents

in the Synthesis of Zeolitic Materials. Springer: 2018.

38.

M, M.; C, M. n.; A, C., Multipore zeolites: synthesis and catalytic applications.

. Angew Chem Int Ed 2015, 54, 3560–3579.

39.

DL, D.; GJ, K.; KG, S., P-derived organic cations as structuredirecting agents:

synthesis of a high-silica zeolite (ITQ-27) with a two-dimensional 12-ring channel

system. J Am Chem Soc 2006, 128, 8862–8867.

40.

EM, F.; RL, P. Silica polymorph and process for preparing same. 1978.

41.

P, C.; JL, P.; A, S.-M., The fluoride route: a strategy to crystalline porous

material. Comptes Rendus Chimie 2005, 8 (2), 245–266.

42.

SI, Z.; RJ, D.; R, M., Studies on the role of fluoride ion vs reaction

concentration in zeolite synthesis Journal of Physical Chemistry B 2005, 109 (55),

652–661.

43.

J, L.; A, C.; J, Y., Synthesis of new zeolite structures. Chem Soc Rev 2015, 44

(23), 7112–7127.

44.

Z, W.; J, Y.; R, X., Needs and trends in rational synthesis of zeolitic materials.

Chem Soc Rev 2012, 41 (2), 1729–1741.

45.

Prakash, A. M.; Unnikrishnan, S., Synthesis of SAPO-34: high silicon

incorporation in the presence of morpholine as template. Journal of the Chemical

Society, Faraday Transactions 1994, 90 (15), 2291-2296.

46.

Emrani, P.; Fatemi, S.; Ashraf Talesh, S. S., Effect of Synthesis Parameters on

Phase Purity, Crystallinity and Particle Size of SAPO-34. 2011, 30, 113-121.

47.

Zhang, Y.; Ren, Z.; Wang, Y.; Deng, Y.; Li, J., Synthesis of Small-Sized

SAPO-34 Crystals with Varying Template Combinations for the Conversion of

Methanol to Olefins. 2018, 8, 570.

48.

M S, P., X-ray Diffraction Analysis: Principle, Instrument and Applications.

2014.



62



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

TÀI LIỆU THAM KHẢO

Tải bản đầy đủ ngay(0 tr)

×